Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904705314> ?p ?o ?g. }
- W2904705314 endingPage "352" @default.
- W2904705314 startingPage "323" @default.
- W2904705314 abstract "The cycling of iron (Fe) is often closely linked with that of carbon, nitrogen, phosphorus and manganese. Therefore, alterations in the Fe cycle may be indicative of concurrent overall changes in the biogeochemistry of terrestrial and aquatic ecosystems. Biogeochemical processes taking part in the Fe cycle frequently fractionate stable Fe isotopes, leaving soil, plant and other compartments of the ecosystems with varied Fe isotopic signatures. In this work, we reviewed the Fe isotope fractionation processes that have been reported so far for terrestrial ecosystems. While parent materials vary in Fe isotope compositions, pedogenic processes can further fractionate Fe isotope signatures, resulting in soil profiles with δ56Fe values (relative to isotope standard IRMM-014) from −0.52 to +0.72‰. Different soil Fe pools, as a result of cycling processes, show an even broader range of δ56Fe values, with secondary Fe oxides being isotopically the lightest, and with Fe sequestered in silicate minerals being the heaviest, due to preferential release of light Fe isotopes during dissolution of minerals. Actually and potentially plant-available Fe in soil can be extracted by 0.5 M HCl, which includes pools of water-extractable and exchangeable Fe, organically bound or adsorbed Fe, and poorly crystalline Fe oxides, altogether showing a depletion of heavy Fe isotopes with δ56Fe values down to −1.08‰. Depending on the Fe speciation and concentration present in the growth medium, plants can adapt their uptake strategy for Fe. Plants of the strategy I type especially take up light iron isotopes, while strategy II plants fractionate less towards light isotopes. Aboveground tissues usually show lighter Fe isotope signatures than the roots, with flowers (δ56Fe: −2.15 to −0.23‰) being isotopically the lightest. In freshwater systems, the most distinct Fe isotope fractionation is usually found at the oxic-anoxic interface, where redox conditions change and thus Fe speciation controls the degree of Fe isotope fractionation. Similar to soils, the δ56Fe values of unfiltered water mainly reflect averaged Fe isotope compositions across fractions with different particle sizes. In filtered freshwater (<0.45 μm), isolated colloid-sized fractions can exhibit either positive or negative δ56Fe values, depending on the chosen size fraction and the origin of the (nano) particles, with δ56Fe values up to +2.79‰ for fractions smaller than 0.003 μm from an arctic stream or down to −1.73‰ for dissolved Fe (<0.02 μm) from a boreal forested catchment. Most freshwater studies showed that rivers with elevated contents of dissolved organic carbon (DOC) tend to be isotopically heavier than those with lower DOC contents, while some studies also showed that rivers with high DOC can display light Fe isotopic signatures owing to the input of groundwater- and/or soil water-derived Fe. Finally, anthropogenic impacts can contribute to Fe isotope fractionation in freshwaters and may widen the range of δ56Fe values in the environment, with the lowest records found down to −5.29‰. Overall, our compilation reveals that Fe pools in different terrestrial system compartments vary in stable Fe isotope compositions, although the current database is still small. In order to use stable Fe isotopes as proxies to reconstruct the biogeochemical processes, future works should not solely rely on bulk δ56Fe assessments, but also involve the assessment of different fractionation factors for all biogeochemical pathways, which includes isotopic analyses among various pools of the terrestrial Fe cycle." @default.
- W2904705314 created "2018-12-22" @default.
- W2904705314 creator A5009499465 @default.
- W2904705314 creator A5043622677 @default.
- W2904705314 creator A5050101626 @default.
- W2904705314 creator A5066758438 @default.
- W2904705314 creator A5081555088 @default.
- W2904705314 date "2019-03-01" @default.
- W2904705314 modified "2023-10-16" @default.
- W2904705314 title "Iron cycling and isotope fractionation in terrestrial ecosystems" @default.
- W2904705314 cites W1518372518 @default.
- W2904705314 cites W1577493199 @default.
- W2904705314 cites W1588913699 @default.
- W2904705314 cites W1597130528 @default.
- W2904705314 cites W1662276039 @default.
- W2904705314 cites W1966010475 @default.
- W2904705314 cites W1966325683 @default.
- W2904705314 cites W1967199319 @default.
- W2904705314 cites W1967765826 @default.
- W2904705314 cites W1971407053 @default.
- W2904705314 cites W1974655800 @default.
- W2904705314 cites W1975357690 @default.
- W2904705314 cites W1975665084 @default.
- W2904705314 cites W1976126399 @default.
- W2904705314 cites W1978052340 @default.
- W2904705314 cites W1979617574 @default.
- W2904705314 cites W1980636688 @default.
- W2904705314 cites W1982493705 @default.
- W2904705314 cites W1984854172 @default.
- W2904705314 cites W1987716298 @default.
- W2904705314 cites W1988415005 @default.
- W2904705314 cites W1991315594 @default.
- W2904705314 cites W1992220405 @default.
- W2904705314 cites W1992506037 @default.
- W2904705314 cites W1992615119 @default.
- W2904705314 cites W1994843882 @default.
- W2904705314 cites W1995914534 @default.
- W2904705314 cites W1998749797 @default.
- W2904705314 cites W2001405671 @default.
- W2904705314 cites W2002500248 @default.
- W2904705314 cites W2005995746 @default.
- W2904705314 cites W2007443159 @default.
- W2904705314 cites W2008851637 @default.
- W2904705314 cites W2013351001 @default.
- W2904705314 cites W2014683916 @default.
- W2904705314 cites W2018900243 @default.
- W2904705314 cites W2019058634 @default.
- W2904705314 cites W2019387141 @default.
- W2904705314 cites W2021289303 @default.
- W2904705314 cites W2022216240 @default.
- W2904705314 cites W2023198536 @default.
- W2904705314 cites W2024731134 @default.
- W2904705314 cites W2027143279 @default.
- W2904705314 cites W2028717873 @default.
- W2904705314 cites W2029354874 @default.
- W2904705314 cites W2029462176 @default.
- W2904705314 cites W2030640705 @default.
- W2904705314 cites W2030715299 @default.
- W2904705314 cites W2032091956 @default.
- W2904705314 cites W2034516855 @default.
- W2904705314 cites W2035265108 @default.
- W2904705314 cites W2035339705 @default.
- W2904705314 cites W2035866696 @default.
- W2904705314 cites W2036549191 @default.
- W2904705314 cites W2039798280 @default.
- W2904705314 cites W2041170775 @default.
- W2904705314 cites W2042326738 @default.
- W2904705314 cites W2042760382 @default.
- W2904705314 cites W2043150294 @default.
- W2904705314 cites W2044791144 @default.
- W2904705314 cites W2045045042 @default.
- W2904705314 cites W2045397058 @default.
- W2904705314 cites W2047058078 @default.
- W2904705314 cites W2047397895 @default.
- W2904705314 cites W2047992810 @default.
- W2904705314 cites W2048229899 @default.
- W2904705314 cites W2050046238 @default.
- W2904705314 cites W2052099565 @default.
- W2904705314 cites W2052393515 @default.
- W2904705314 cites W2053336236 @default.
- W2904705314 cites W2054889142 @default.
- W2904705314 cites W2057696385 @default.
- W2904705314 cites W2059097331 @default.
- W2904705314 cites W2059907305 @default.
- W2904705314 cites W2059964111 @default.
- W2904705314 cites W2061338944 @default.
- W2904705314 cites W2066340240 @default.
- W2904705314 cites W2069822601 @default.
- W2904705314 cites W2069870317 @default.
- W2904705314 cites W2070831559 @default.
- W2904705314 cites W2071069131 @default.
- W2904705314 cites W2072553183 @default.
- W2904705314 cites W2073639876 @default.
- W2904705314 cites W2073650942 @default.
- W2904705314 cites W2074797379 @default.
- W2904705314 cites W2075069821 @default.
- W2904705314 cites W2075225836 @default.
- W2904705314 cites W2075433078 @default.