Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904756938> ?p ?o ?g. }
- W2904756938 endingPage "217" @default.
- W2904756938 startingPage "211" @default.
- W2904756938 abstract "Efforts to improve the value of care for high-cost patients may benefit from care management strategies targeted at clinically distinct subgroups of patients. To evaluate the performance of three different machine learning algorithms for identifying subgroups of high-cost patients. We applied three different clustering algorithms—connectivity-based clustering using agglomerative hierarchical clustering, centroid-based clustering with the k-medoids algorithm, and density-based clustering with the OPTICS algorithm—to a clinical and administrative dataset. We then examined the extent to which each algorithm identified subgroups of patients that were (1) clinically distinct and (2) associated with meaningful differences in relevant utilization metrics. Patients enrolled in a national Medicare Advantage plan, categorized in the top decile of spending (n = 6154). Post hoc discriminative models comparing the importance of variables for distinguishing observations in one cluster from the rest. Variance in utilization and spending measures. Connectivity-based, centroid-based, and density-based clustering identified eight, five, and ten subgroups of high-cost patients, respectively. Post hoc discriminative models indicated that density-based clustering subgroups were the most clinically distinct. The variance of utilization and spending measures was the greatest among the subgroups identified through density-based clustering. Machine learning algorithms can be used to segment a high-cost patient population into subgroups of patients that are clinically distinct and associated with meaningful differences in utilization and spending measures. For these purposes, density-based clustering with the OPTICS algorithm outperformed connectivity-based and centroid-based clustering algorithms." @default.
- W2904756938 created "2018-12-22" @default.
- W2904756938 creator A5007333314 @default.
- W2904756938 creator A5016103055 @default.
- W2904756938 creator A5044684776 @default.
- W2904756938 creator A5051657336 @default.
- W2904756938 creator A5053908011 @default.
- W2904756938 creator A5076012944 @default.
- W2904756938 creator A5077687108 @default.
- W2904756938 date "2018-12-12" @default.
- W2904756938 modified "2023-10-16" @default.
- W2904756938 title "Applying Machine Learning Algorithms to Segment High-Cost Patient Populations" @default.
- W2904756938 cites W1501500081 @default.
- W2904756938 cites W1594924988 @default.
- W2904756938 cites W1787383574 @default.
- W2904756938 cites W1813068103 @default.
- W2904756938 cites W1987971958 @default.
- W2904756938 cites W2016381774 @default.
- W2904756938 cites W2035494433 @default.
- W2904756938 cites W2038872861 @default.
- W2904756938 cites W2041031177 @default.
- W2904756938 cites W2070503238 @default.
- W2904756938 cites W2072845909 @default.
- W2904756938 cites W2088931936 @default.
- W2904756938 cites W2101537465 @default.
- W2904756938 cites W2106715003 @default.
- W2904756938 cites W2150035260 @default.
- W2904756938 cites W2160642098 @default.
- W2904756938 cites W2268134053 @default.
- W2904756938 cites W2413027554 @default.
- W2904756938 cites W2488810890 @default.
- W2904756938 cites W2527639527 @default.
- W2904756938 cites W2530976429 @default.
- W2904756938 cites W2557574586 @default.
- W2904756938 cites W2622807556 @default.
- W2904756938 cites W2798032570 @default.
- W2904756938 cites W2902131578 @default.
- W2904756938 cites W33016702 @default.
- W2904756938 cites W4234698323 @default.
- W2904756938 cites W4237171445 @default.
- W2904756938 doi "https://doi.org/10.1007/s11606-018-4760-8" @default.
- W2904756938 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6374273" @default.
- W2904756938 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30543022" @default.
- W2904756938 hasPublicationYear "2018" @default.
- W2904756938 type Work @default.
- W2904756938 sameAs 2904756938 @default.
- W2904756938 citedByCount "20" @default.
- W2904756938 countsByYear W29047569382018 @default.
- W2904756938 countsByYear W29047569382020 @default.
- W2904756938 countsByYear W29047569382021 @default.
- W2904756938 countsByYear W29047569382022 @default.
- W2904756938 countsByYear W29047569382023 @default.
- W2904756938 crossrefType "journal-article" @default.
- W2904756938 hasAuthorship W2904756938A5007333314 @default.
- W2904756938 hasAuthorship W2904756938A5016103055 @default.
- W2904756938 hasAuthorship W2904756938A5044684776 @default.
- W2904756938 hasAuthorship W2904756938A5051657336 @default.
- W2904756938 hasAuthorship W2904756938A5053908011 @default.
- W2904756938 hasAuthorship W2904756938A5076012944 @default.
- W2904756938 hasAuthorship W2904756938A5077687108 @default.
- W2904756938 hasBestOaLocation W29047569381 @default.
- W2904756938 hasConcept C11413529 @default.
- W2904756938 hasConcept C115328559 @default.
- W2904756938 hasConcept C119857082 @default.
- W2904756938 hasConcept C121955636 @default.
- W2904756938 hasConcept C124101348 @default.
- W2904756938 hasConcept C144133560 @default.
- W2904756938 hasConcept C146599234 @default.
- W2904756938 hasConcept C154945302 @default.
- W2904756938 hasConcept C196083921 @default.
- W2904756938 hasConcept C22648726 @default.
- W2904756938 hasConcept C33704608 @default.
- W2904756938 hasConcept C41008148 @default.
- W2904756938 hasConcept C71924100 @default.
- W2904756938 hasConcept C73555534 @default.
- W2904756938 hasConcept C92835128 @default.
- W2904756938 hasConcept C94641424 @default.
- W2904756938 hasConceptScore W2904756938C11413529 @default.
- W2904756938 hasConceptScore W2904756938C115328559 @default.
- W2904756938 hasConceptScore W2904756938C119857082 @default.
- W2904756938 hasConceptScore W2904756938C121955636 @default.
- W2904756938 hasConceptScore W2904756938C124101348 @default.
- W2904756938 hasConceptScore W2904756938C144133560 @default.
- W2904756938 hasConceptScore W2904756938C146599234 @default.
- W2904756938 hasConceptScore W2904756938C154945302 @default.
- W2904756938 hasConceptScore W2904756938C196083921 @default.
- W2904756938 hasConceptScore W2904756938C22648726 @default.
- W2904756938 hasConceptScore W2904756938C33704608 @default.
- W2904756938 hasConceptScore W2904756938C41008148 @default.
- W2904756938 hasConceptScore W2904756938C71924100 @default.
- W2904756938 hasConceptScore W2904756938C73555534 @default.
- W2904756938 hasConceptScore W2904756938C92835128 @default.
- W2904756938 hasConceptScore W2904756938C94641424 @default.
- W2904756938 hasIssue "2" @default.
- W2904756938 hasLocation W29047569381 @default.
- W2904756938 hasLocation W29047569382 @default.
- W2904756938 hasLocation W29047569383 @default.
- W2904756938 hasLocation W29047569384 @default.