Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904807675> ?p ?o ?g. }
- W2904807675 endingPage "32" @default.
- W2904807675 startingPage "25" @default.
- W2904807675 abstract "The rupture of an intracranial aneurysm is a serious incident, causing subarachnoid hemorrhage associated with high fatality and morbidity rates. Because the demand for radiologic examinations is steadily growing, physician fatigue due to an increased workload is a real concern and may lead to mistaken diagnoses of potentially relevant findings. Our aim was to develop a sufficient system for automated detection of intracranial aneurysms.In a retrospective study, we established a system for the detection of intracranial aneurysms from 3D TOF-MRA data. The system is based on an open-source neural network, originally developed for segmentation of anatomic structures in medical images. Eighty-five datasets of patients with a total of 115 intracranial aneurysms were used to train the system and evaluate its performance. Manual annotation of aneurysms based on radiologic reports and critical revision of image data served as the reference standard. Sensitivity, false-positives per case, and positive predictive value were determined for different pipelines with modified pre- and postprocessing.The highest overall sensitivity of our system for the detection of intracranial aneurysms was 90% with a sensitivity of 96% for aneurysms with a diameter of 3-7 mm and 100% for aneurysms of >7 mm. The best location-dependent performance was in the posterior circulation. Pre- and postprocessing sufficiently reduced the number of false-positives.Our system, based on a deep learning convolutional network, can detect intracranial aneurysms with a high sensitivity from 3D TOF-MRA data." @default.
- W2904807675 created "2018-12-22" @default.
- W2904807675 creator A5022489433 @default.
- W2904807675 creator A5024478146 @default.
- W2904807675 creator A5038011653 @default.
- W2904807675 creator A5058606124 @default.
- W2904807675 creator A5075303861 @default.
- W2904807675 creator A5077390693 @default.
- W2904807675 date "2018-12-20" @default.
- W2904807675 modified "2023-10-15" @default.
- W2904807675 title "Deep Learning–Based Detection of Intracranial Aneurysms in 3D TOF-MRA" @default.
- W2904807675 cites W1573224866 @default.
- W2904807675 cites W1909740415 @default.
- W2904807675 cites W1915219863 @default.
- W2904807675 cites W1992805592 @default.
- W2904807675 cites W2027654111 @default.
- W2904807675 cites W2039865781 @default.
- W2904807675 cites W2069816479 @default.
- W2904807675 cites W2093232475 @default.
- W2904807675 cites W2094943913 @default.
- W2904807675 cites W2116291080 @default.
- W2904807675 cites W2117340355 @default.
- W2904807675 cites W2127890285 @default.
- W2904807675 cites W2152035880 @default.
- W2904807675 cites W2158147889 @default.
- W2904807675 cites W2163466561 @default.
- W2904807675 cites W2165839911 @default.
- W2904807675 cites W2167878392 @default.
- W2904807675 cites W2169503864 @default.
- W2904807675 cites W2203963179 @default.
- W2904807675 cites W2288040786 @default.
- W2904807675 cites W2301358467 @default.
- W2904807675 cites W2336629714 @default.
- W2904807675 cites W2592122671 @default.
- W2904807675 cites W2592929672 @default.
- W2904807675 cites W2595557940 @default.
- W2904807675 cites W2746587344 @default.
- W2904807675 cites W2766766852 @default.
- W2904807675 doi "https://doi.org/10.3174/ajnr.a5911" @default.
- W2904807675 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7048599" @default.
- W2904807675 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30573461" @default.
- W2904807675 hasPublicationYear "2018" @default.
- W2904807675 type Work @default.
- W2904807675 sameAs 2904807675 @default.
- W2904807675 citedByCount "107" @default.
- W2904807675 countsByYear W29048076752019 @default.
- W2904807675 countsByYear W29048076752020 @default.
- W2904807675 countsByYear W29048076752021 @default.
- W2904807675 countsByYear W29048076752022 @default.
- W2904807675 countsByYear W29048076752023 @default.
- W2904807675 crossrefType "journal-article" @default.
- W2904807675 hasAuthorship W2904807675A5022489433 @default.
- W2904807675 hasAuthorship W2904807675A5024478146 @default.
- W2904807675 hasAuthorship W2904807675A5038011653 @default.
- W2904807675 hasAuthorship W2904807675A5058606124 @default.
- W2904807675 hasAuthorship W2904807675A5075303861 @default.
- W2904807675 hasAuthorship W2904807675A5077390693 @default.
- W2904807675 hasBestOaLocation W29048076751 @default.
- W2904807675 hasConcept C111919701 @default.
- W2904807675 hasConcept C126838900 @default.
- W2904807675 hasConcept C141071460 @default.
- W2904807675 hasConcept C154945302 @default.
- W2904807675 hasConcept C2776098176 @default.
- W2904807675 hasConcept C2777736543 @default.
- W2904807675 hasConcept C2778476105 @default.
- W2904807675 hasConcept C41008148 @default.
- W2904807675 hasConcept C534262118 @default.
- W2904807675 hasConcept C64869954 @default.
- W2904807675 hasConcept C71924100 @default.
- W2904807675 hasConceptScore W2904807675C111919701 @default.
- W2904807675 hasConceptScore W2904807675C126838900 @default.
- W2904807675 hasConceptScore W2904807675C141071460 @default.
- W2904807675 hasConceptScore W2904807675C154945302 @default.
- W2904807675 hasConceptScore W2904807675C2776098176 @default.
- W2904807675 hasConceptScore W2904807675C2777736543 @default.
- W2904807675 hasConceptScore W2904807675C2778476105 @default.
- W2904807675 hasConceptScore W2904807675C41008148 @default.
- W2904807675 hasConceptScore W2904807675C534262118 @default.
- W2904807675 hasConceptScore W2904807675C64869954 @default.
- W2904807675 hasConceptScore W2904807675C71924100 @default.
- W2904807675 hasIssue "1" @default.
- W2904807675 hasLocation W29048076751 @default.
- W2904807675 hasLocation W29048076752 @default.
- W2904807675 hasLocation W29048076753 @default.
- W2904807675 hasLocation W29048076754 @default.
- W2904807675 hasOpenAccess W2904807675 @default.
- W2904807675 hasPrimaryLocation W29048076751 @default.
- W2904807675 hasRelatedWork W2011744972 @default.
- W2904807675 hasRelatedWork W2024110249 @default.
- W2904807675 hasRelatedWork W2058520121 @default.
- W2904807675 hasRelatedWork W2082302807 @default.
- W2904807675 hasRelatedWork W2086283854 @default.
- W2904807675 hasRelatedWork W2090949165 @default.
- W2904807675 hasRelatedWork W2164911258 @default.
- W2904807675 hasRelatedWork W2392912153 @default.
- W2904807675 hasRelatedWork W2409762712 @default.
- W2904807675 hasRelatedWork W2683539452 @default.
- W2904807675 hasVolume "40" @default.