Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904830152> ?p ?o ?g. }
- W2904830152 endingPage "1314" @default.
- W2904830152 startingPage "1301" @default.
- W2904830152 abstract "This paper constructs an integrated virtual reconfiguration model that can simultaneously group workstations, schedule virtual cells, and select energy consumption levels. If managers prefer the physical proximity of machines in a certain virtual cell, the material handling cost in it can be reduced. However, the distances among machines in other virtual cells are probably large, which may cause greater material handling cost. If a virtual cell for a certain product type has priority to be created, the backorder cost of that type can be decreased or even avoided. Nevertheless, the creation of virtual cells for other product types may be delayed, perhaps leading to the higher backorder cost of other product types. In addition, managers can choose a high energy consumption level of a machine to expedite its production to reduce backorder cost at the expense of more energy consumption cost. To minimize the total operational cost, we develop a novel Discrete Imperialist Competitive Algorithm with a Priority rule-based heuristic (DICAP). It includes a colony movement strategy, a competition strategy, a collapse mechanism, a development strategy, and a sufficient convergence policy. Numerical experiments and t-test are conducted to validate that the proposed DICAP outperforms genetic algorithm and simulated annealing. Note to Practitioners-Virtual cellular manufacturing systems can create an expectation of improving machine utilization and productivity, reducing reconfiguration cost, and adaptation to product specification changes in reality. However, managers often feel difficult to make appropriate decisions for three interrelated issues, i.e., workstation grouping, virtual cell creation and release, and energy consumption options. Workstation grouping depends on the availability of machines and workers, and the availability may be related to the creation and release time of some virtual cells. Whether a virtual cell is created in time has an influence on the selection of energy consumption levels, because managers need to consider both backorder cost and energy consumption cost. In addition, there often exists a bottleneck workstation in each virtual cell. Therefore, it is essential and worthwhile to select appropriate energy consumption levels of machines to smooth the production efficiency of grouped workstations. To effectively address the issues, this paper presents an integrated virtual reconfiguration model. A novel Discrete Imperialist Competitive Algorithm with a Priority rule-based heuristic is developed to minimize the total operational cost. Numerical experiments and t-test results indicate that the proposed algorithm outperforms two commonly used ones, i.e., genetic algorithm and simulated annealing in solution quality. It is suitable for virtual reconfiguration problem with industrial size in practice." @default.
- W2904830152 created "2018-12-22" @default.
- W2904830152 creator A5015760127 @default.
- W2904830152 creator A5053109085 @default.
- W2904830152 creator A5081318069 @default.
- W2904830152 date "2019-07-01" @default.
- W2904830152 modified "2023-10-17" @default.
- W2904830152 title "Reconfiguration of Virtual Cellular Manufacturing Systems via Improved Imperialist Competitive Approach" @default.
- W2904830152 cites W136751617 @default.
- W2904830152 cites W1630809122 @default.
- W2904830152 cites W1965080035 @default.
- W2904830152 cites W1976994634 @default.
- W2904830152 cites W1979744100 @default.
- W2904830152 cites W1984779461 @default.
- W2904830152 cites W1988241648 @default.
- W2904830152 cites W2001857099 @default.
- W2904830152 cites W2012560188 @default.
- W2904830152 cites W2013752535 @default.
- W2904830152 cites W2022431646 @default.
- W2904830152 cites W2027739075 @default.
- W2904830152 cites W2028399867 @default.
- W2904830152 cites W2033011996 @default.
- W2904830152 cites W2053398350 @default.
- W2904830152 cites W2064526337 @default.
- W2904830152 cites W2065425745 @default.
- W2904830152 cites W2067006784 @default.
- W2904830152 cites W2068464056 @default.
- W2904830152 cites W2082468550 @default.
- W2904830152 cites W2083735978 @default.
- W2904830152 cites W2090712972 @default.
- W2904830152 cites W2112788400 @default.
- W2904830152 cites W2142108759 @default.
- W2904830152 cites W2154884882 @default.
- W2904830152 cites W2246251227 @default.
- W2904830152 cites W2271022265 @default.
- W2904830152 cites W2312336076 @default.
- W2904830152 cites W2319924983 @default.
- W2904830152 cites W2328836704 @default.
- W2904830152 cites W2345236260 @default.
- W2904830152 cites W2402736019 @default.
- W2904830152 cites W2464889299 @default.
- W2904830152 cites W2483122450 @default.
- W2904830152 cites W2488494182 @default.
- W2904830152 cites W2497723199 @default.
- W2904830152 cites W2514247198 @default.
- W2904830152 cites W2524664129 @default.
- W2904830152 cites W2525625701 @default.
- W2904830152 cites W2553177683 @default.
- W2904830152 cites W2556032135 @default.
- W2904830152 cites W2570770292 @default.
- W2904830152 cites W2618849455 @default.
- W2904830152 cites W2734493020 @default.
- W2904830152 cites W2767293546 @default.
- W2904830152 cites W585493022 @default.
- W2904830152 doi "https://doi.org/10.1109/tase.2018.2878653" @default.
- W2904830152 hasPublicationYear "2019" @default.
- W2904830152 type Work @default.
- W2904830152 sameAs 2904830152 @default.
- W2904830152 citedByCount "14" @default.
- W2904830152 countsByYear W29048301522020 @default.
- W2904830152 countsByYear W29048301522021 @default.
- W2904830152 countsByYear W29048301522022 @default.
- W2904830152 countsByYear W29048301522023 @default.
- W2904830152 crossrefType "journal-article" @default.
- W2904830152 hasAuthorship W2904830152A5015760127 @default.
- W2904830152 hasAuthorship W2904830152A5053109085 @default.
- W2904830152 hasAuthorship W2904830152A5081318069 @default.
- W2904830152 hasConcept C111919701 @default.
- W2904830152 hasConcept C11413529 @default.
- W2904830152 hasConcept C117671659 @default.
- W2904830152 hasConcept C119599485 @default.
- W2904830152 hasConcept C119701452 @default.
- W2904830152 hasConcept C120314980 @default.
- W2904830152 hasConcept C126980161 @default.
- W2904830152 hasConcept C127413603 @default.
- W2904830152 hasConcept C13736549 @default.
- W2904830152 hasConcept C149635348 @default.
- W2904830152 hasConcept C200601418 @default.
- W2904830152 hasConcept C2524010 @default.
- W2904830152 hasConcept C25344961 @default.
- W2904830152 hasConcept C2778106978 @default.
- W2904830152 hasConcept C2780165032 @default.
- W2904830152 hasConcept C33923547 @default.
- W2904830152 hasConcept C41008148 @default.
- W2904830152 hasConcept C67953723 @default.
- W2904830152 hasConcept C68387754 @default.
- W2904830152 hasConcept C90673727 @default.
- W2904830152 hasConceptScore W2904830152C111919701 @default.
- W2904830152 hasConceptScore W2904830152C11413529 @default.
- W2904830152 hasConceptScore W2904830152C117671659 @default.
- W2904830152 hasConceptScore W2904830152C119599485 @default.
- W2904830152 hasConceptScore W2904830152C119701452 @default.
- W2904830152 hasConceptScore W2904830152C120314980 @default.
- W2904830152 hasConceptScore W2904830152C126980161 @default.
- W2904830152 hasConceptScore W2904830152C127413603 @default.
- W2904830152 hasConceptScore W2904830152C13736549 @default.
- W2904830152 hasConceptScore W2904830152C149635348 @default.
- W2904830152 hasConceptScore W2904830152C200601418 @default.