Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904851525> ?p ?o ?g. }
- W2904851525 endingPage "10258" @default.
- W2904851525 startingPage "10246" @default.
- W2904851525 abstract "The living anionic copolymerization of isoprene and styrene in cyclohexane affords tapered block copolymers due to the highly disparate reactivity ratios of rI = 12.8 and rS = 0.051. Repeated addition of a mixture of these monomers was exploited to generate tapered multiblock copolymer architectures of the (AB)n type with up to 10 blocks (1 ≤ n ≤ 5), thereby subdividing the polymer chains in alternating flexible polyisoprene (PI) and rigid polystyrene (PS) segments. Three series of well-defined tapered multiblock copolymers with approximate molecular weights of 80, 240, and 400 kg/mol were prepared on the 100 g scale. Via this synthetic strategy polymer chains were divided in di-, tetra-, hexa-, octa-, and decablock tapered multiblock structures. Because of the living nature of the polymerization, low dispersities in the range 1.06–1.28 (decablock) were obtained. To ensure full monomer conversion prior to the addition of the isoprene/styrene mixture, kinetic Monte Carlo simulation was employed, permitting to simulate chain growth in silico by employing the known polymerization rates and rate constants kp. The synthesized tapered multiblock copolymers were characterized via SEC and selected samples via oxidative degradation of the polyisoprene block in solution, confirming the well-defined nature of the PS segments. Subsequently, the question was addressed, to which extent the tapered multiblock copolymers are capable of forming ordered nanosegregated morphologies. Detailed thermal, structural, and rheological investigations showed that the tapered multiblock copolymers with a molecular weight of 240 kg/mol formed ordered phases with the expected lamellar morphology. However, X-ray scattering data and transmission electron microscopy (TEM) images of the octablock and decablock copolymers reflect weakly ordered structures at ambient temperature. The domain spacing, d, was found to scale as d ∼ N0.62, where N is the total degree of polymerization, suggesting stretching of chains and nonideal configurations. Following the structure factor, S(q), as a function of temperature revealed that the tapered multiblock copolymers undergo a fluctuation-induced first-order transition at the respective order-to-disorder transition temperature, TODT. The viscoelastic response of the tapered copolymers was controlled by the nanodomain structure, the degree of segregation, nanodomain-bridging configurations of blocks, and also the proximity to the glass temperature of the vitrified PS domains. Tapered hexablock copolymers were found to best combine structural integrity and mechanical toughness, while maintaining a large strain at break (>900%)." @default.
- W2904851525 created "2018-12-22" @default.
- W2904851525 creator A5000262650 @default.
- W2904851525 creator A5013748436 @default.
- W2904851525 creator A5021333381 @default.
- W2904851525 creator A5022204533 @default.
- W2904851525 creator A5027639407 @default.
- W2904851525 creator A5030174657 @default.
- W2904851525 creator A5050535862 @default.
- W2904851525 creator A5068568466 @default.
- W2904851525 creator A5073420023 @default.
- W2904851525 creator A5091825618 @default.
- W2904851525 date "2018-12-13" @default.
- W2904851525 modified "2023-10-12" @default.
- W2904851525 title "Isoprene/Styrene Tapered Multiblock Copolymers with up to Ten Blocks: Synthesis, Phase Behavior, Order, and Mechanical Properties" @default.
- W2904851525 cites W1552969335 @default.
- W2904851525 cites W1967388342 @default.
- W2904851525 cites W1970708429 @default.
- W2904851525 cites W1971110149 @default.
- W2904851525 cites W1972016610 @default.
- W2904851525 cites W1977970573 @default.
- W2904851525 cites W1979519434 @default.
- W2904851525 cites W1981575070 @default.
- W2904851525 cites W1982449027 @default.
- W2904851525 cites W1983525413 @default.
- W2904851525 cites W1986315004 @default.
- W2904851525 cites W1988688275 @default.
- W2904851525 cites W1992190166 @default.
- W2904851525 cites W1993370826 @default.
- W2904851525 cites W1996388381 @default.
- W2904851525 cites W2000389861 @default.
- W2904851525 cites W2007829833 @default.
- W2904851525 cites W2009697282 @default.
- W2904851525 cites W2015480027 @default.
- W2904851525 cites W2021158547 @default.
- W2904851525 cites W2021915361 @default.
- W2904851525 cites W2025428406 @default.
- W2904851525 cites W2026132129 @default.
- W2904851525 cites W2026616183 @default.
- W2904851525 cites W2028637712 @default.
- W2904851525 cites W2032081126 @default.
- W2904851525 cites W2032300084 @default.
- W2904851525 cites W2032985044 @default.
- W2904851525 cites W2034501059 @default.
- W2904851525 cites W2042050428 @default.
- W2904851525 cites W2048592222 @default.
- W2904851525 cites W2055358920 @default.
- W2904851525 cites W2058624148 @default.
- W2904851525 cites W2060860511 @default.
- W2904851525 cites W2062200875 @default.
- W2904851525 cites W2066283904 @default.
- W2904851525 cites W2070468922 @default.
- W2904851525 cites W2071733361 @default.
- W2904851525 cites W2073289966 @default.
- W2904851525 cites W2076538188 @default.
- W2904851525 cites W2078845040 @default.
- W2904851525 cites W2085887570 @default.
- W2904851525 cites W2089715541 @default.
- W2904851525 cites W2090074506 @default.
- W2904851525 cites W2090708418 @default.
- W2904851525 cites W2091447151 @default.
- W2904851525 cites W2094443469 @default.
- W2904851525 cites W2095398992 @default.
- W2904851525 cites W2099788323 @default.
- W2904851525 cites W2115639447 @default.
- W2904851525 cites W2132913939 @default.
- W2904851525 cites W2141220084 @default.
- W2904851525 cites W2155664774 @default.
- W2904851525 cites W2161289040 @default.
- W2904851525 cites W2168628938 @default.
- W2904851525 cites W2232587217 @default.
- W2904851525 cites W2283246728 @default.
- W2904851525 cites W2313734290 @default.
- W2904851525 cites W2322325513 @default.
- W2904851525 cites W2469819933 @default.
- W2904851525 cites W2518375234 @default.
- W2904851525 cites W2561515125 @default.
- W2904851525 cites W2580928474 @default.
- W2904851525 cites W2601516966 @default.
- W2904851525 cites W2728220958 @default.
- W2904851525 cites W2742635179 @default.
- W2904851525 cites W2746498413 @default.
- W2904851525 cites W2755034335 @default.
- W2904851525 cites W2755936213 @default.
- W2904851525 cites W2762501848 @default.
- W2904851525 cites W2769196671 @default.
- W2904851525 cites W2790815740 @default.
- W2904851525 cites W2799836349 @default.
- W2904851525 cites W2802011141 @default.
- W2904851525 cites W2808977835 @default.
- W2904851525 cites W2894708046 @default.
- W2904851525 cites W2979675268 @default.
- W2904851525 cites W4236669642 @default.
- W2904851525 cites W4251955812 @default.
- W2904851525 cites W4256040576 @default.
- W2904851525 doi "https://doi.org/10.1021/acs.macromol.8b01961" @default.
- W2904851525 hasPublicationYear "2018" @default.
- W2904851525 type Work @default.