Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904925876> ?p ?o ?g. }
- W2904925876 endingPage "172" @default.
- W2904925876 startingPage "160" @default.
- W2904925876 abstract "Broad learning system (BLS) is an emerging learning algorithm for the connectionist models, which have enjoyed much popularity on many applications. As an alternative approach of learning in deep structure, the BLS develops an incremental learning neural network that can be modeled in a flexible way, and becomes a promising technique in the field of knowledge discovery and data engineering. To further improve the performance of BLS, our focus is to investigate these algorithms which can enhance the BLS. On one hand, from the viewpoint of feature engineering, unsupervised group-wise encoding is conducted for feature extraction, and broadly fused feature representation is used to improve the ability of BLS, in terms of the learning and reusing multi-level features. On the other hand, for imbalanced learning from disproportionate size of categories instances, a cost-sensitive BLS framework is proposed in this paper, which aims to minimize the total misclassifying cost in classification learning. Finally, we conduct extensive experiments on a wide range of datasets (e.g., computer vision and bug reports) to demonstrate the effectiveness of the proposed BLS framework." @default.
- W2904925876 created "2018-12-22" @default.
- W2904925876 creator A5007082864 @default.
- W2904925876 creator A5018071549 @default.
- W2904925876 creator A5020254078 @default.
- W2904925876 creator A5063514061 @default.
- W2904925876 date "2019-01-01" @default.
- W2904925876 modified "2023-10-17" @default.
- W2904925876 title "Rich Feature Combination for Cost-Based Broad Learning System" @default.
- W2904925876 cites W1498436455 @default.
- W2904925876 cites W1566256432 @default.
- W2904925876 cites W1971129545 @default.
- W2904925876 cites W2004992275 @default.
- W2904925876 cites W2008056655 @default.
- W2904925876 cites W2012638612 @default.
- W2904925876 cites W2018168021 @default.
- W2904925876 cites W2025768430 @default.
- W2904925876 cites W2026131661 @default.
- W2904925876 cites W2026854879 @default.
- W2904925876 cites W2030184507 @default.
- W2904925876 cites W2031878488 @default.
- W2904925876 cites W2075369741 @default.
- W2904925876 cites W2078622091 @default.
- W2904925876 cites W2079735306 @default.
- W2904925876 cites W2097117768 @default.
- W2904925876 cites W2100495367 @default.
- W2904925876 cites W2100556411 @default.
- W2904925876 cites W2102193394 @default.
- W2904925876 cites W2103560185 @default.
- W2904925876 cites W2111072639 @default.
- W2904925876 cites W2118978333 @default.
- W2904925876 cites W2120593235 @default.
- W2904925876 cites W2127141656 @default.
- W2904925876 cites W2136922672 @default.
- W2904925876 cites W2141695047 @default.
- W2904925876 cites W2147220807 @default.
- W2904925876 cites W2149656257 @default.
- W2904925876 cites W2155910151 @default.
- W2904925876 cites W2157331557 @default.
- W2904925876 cites W2183341477 @default.
- W2904925876 cites W2194775991 @default.
- W2904925876 cites W2256362396 @default.
- W2904925876 cites W2279039799 @default.
- W2904925876 cites W2290968742 @default.
- W2904925876 cites W2296444013 @default.
- W2904925876 cites W2301541953 @default.
- W2904925876 cites W2302137010 @default.
- W2904925876 cites W2305347498 @default.
- W2904925876 cites W2463955103 @default.
- W2904925876 cites W2468539463 @default.
- W2904925876 cites W2549139847 @default.
- W2904925876 cites W2563167163 @default.
- W2904925876 cites W2565639579 @default.
- W2904925876 cites W2622634640 @default.
- W2904925876 cites W2738226240 @default.
- W2904925876 cites W2740702290 @default.
- W2904925876 cites W2756688796 @default.
- W2904925876 cites W2757443524 @default.
- W2904925876 cites W2798793675 @default.
- W2904925876 cites W2799501716 @default.
- W2904925876 cites W2807831594 @default.
- W2904925876 cites W2887220169 @default.
- W2904925876 cites W2890970224 @default.
- W2904925876 cites W2963150697 @default.
- W2904925876 cites W2963446712 @default.
- W2904925876 doi "https://doi.org/10.1109/access.2018.2885164" @default.
- W2904925876 hasPublicationYear "2019" @default.
- W2904925876 type Work @default.
- W2904925876 sameAs 2904925876 @default.
- W2904925876 citedByCount "23" @default.
- W2904925876 countsByYear W29049258762019 @default.
- W2904925876 countsByYear W29049258762020 @default.
- W2904925876 countsByYear W29049258762021 @default.
- W2904925876 countsByYear W29049258762022 @default.
- W2904925876 countsByYear W29049258762023 @default.
- W2904925876 crossrefType "journal-article" @default.
- W2904925876 hasAuthorship W2904925876A5007082864 @default.
- W2904925876 hasAuthorship W2904925876A5018071549 @default.
- W2904925876 hasAuthorship W2904925876A5020254078 @default.
- W2904925876 hasAuthorship W2904925876A5063514061 @default.
- W2904925876 hasBestOaLocation W29049258761 @default.
- W2904925876 hasConcept C108583219 @default.
- W2904925876 hasConcept C119857082 @default.
- W2904925876 hasConcept C120665830 @default.
- W2904925876 hasConcept C121332964 @default.
- W2904925876 hasConcept C127413603 @default.
- W2904925876 hasConcept C138885662 @default.
- W2904925876 hasConcept C146978453 @default.
- W2904925876 hasConcept C154945302 @default.
- W2904925876 hasConcept C15744967 @default.
- W2904925876 hasConcept C17744445 @default.
- W2904925876 hasConcept C192209626 @default.
- W2904925876 hasConcept C199539241 @default.
- W2904925876 hasConcept C202444582 @default.
- W2904925876 hasConcept C204323151 @default.
- W2904925876 hasConcept C206588197 @default.
- W2904925876 hasConcept C2776359362 @default.
- W2904925876 hasConcept C2776401178 @default.