Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904927450> ?p ?o ?g. }
- W2904927450 abstract "The presence of noise is common in signal processing regardless the signal type. Deep neural networks have shown good performance in noise removal, especially on the image domain. In this work, we consider deep neural networks as a denoising tool where our focus is on one dimensional signals. We introduce an encoder-decoder architecture to denoise signals, represented by a sequence of measurements. Instead of relying only on the standard reconstruction error to train the encoder-decoder network, we treat the task of denoising as distribution alignment between the clean and noisy signals. Then, we propose an adversarial learning formulation where the goal is to align the clean and noisy signal latent representation given that both signals pass through the encoder. In our approach, the discriminator has the role of detecting whether the latent representation comes from clean or noisy signals. We evaluate on electrocardiogram and motion signal denoising; and show better performance than learning-based and non-learning approaches." @default.
- W2904927450 created "2018-12-22" @default.
- W2904927450 creator A5027065196 @default.
- W2904927450 creator A5046896448 @default.
- W2904927450 creator A5066028475 @default.
- W2904927450 creator A5076962962 @default.
- W2904927450 date "2018-12-20" @default.
- W2904927450 modified "2023-09-27" @default.
- W2904927450 title "Adversarial Signal Denoising with Encoder-Decoder Networks." @default.
- W2904927450 cites W1533861849 @default.
- W2904927450 cites W16266776 @default.
- W2904927450 cites W1673510954 @default.
- W2904927450 cites W1689711448 @default.
- W2904927450 cites W1903029394 @default.
- W2904927450 cites W2007221293 @default.
- W2904927450 cites W2099471712 @default.
- W2904927450 cites W2109896502 @default.
- W2904927450 cites W2115755118 @default.
- W2904927450 cites W2145094598 @default.
- W2904927450 cites W2151503710 @default.
- W2904927450 cites W2162800060 @default.
- W2904927450 cites W2187089797 @default.
- W2904927450 cites W2194775991 @default.
- W2904927450 cites W2396274919 @default.
- W2904927450 cites W2405774341 @default.
- W2904927450 cites W2412782625 @default.
- W2904927450 cites W2593768305 @default.
- W2904927450 cites W2765532459 @default.
- W2904927450 cites W2792764867 @default.
- W2904927450 cites W2949382160 @default.
- W2904927450 cites W2963103134 @default.
- W2904927450 cites W2963341152 @default.
- W2904927450 cites W2963501406 @default.
- W2904927450 cites W2964046669 @default.
- W2904927450 cites W2964049407 @default.
- W2904927450 cites W3070038910 @default.
- W2904927450 cites W3216905214 @default.
- W2904927450 cites W397076878 @default.
- W2904927450 cites W6908809 @default.
- W2904927450 hasPublicationYear "2018" @default.
- W2904927450 type Work @default.
- W2904927450 sameAs 2904927450 @default.
- W2904927450 citedByCount "3" @default.
- W2904927450 countsByYear W29049274502019 @default.
- W2904927450 countsByYear W29049274502020 @default.
- W2904927450 crossrefType "posted-content" @default.
- W2904927450 hasAuthorship W2904927450A5027065196 @default.
- W2904927450 hasAuthorship W2904927450A5046896448 @default.
- W2904927450 hasAuthorship W2904927450A5066028475 @default.
- W2904927450 hasAuthorship W2904927450A5076962962 @default.
- W2904927450 hasConcept C108583219 @default.
- W2904927450 hasConcept C111919701 @default.
- W2904927450 hasConcept C115961682 @default.
- W2904927450 hasConcept C118505674 @default.
- W2904927450 hasConcept C153180895 @default.
- W2904927450 hasConcept C154945302 @default.
- W2904927450 hasConcept C163294075 @default.
- W2904927450 hasConcept C17744445 @default.
- W2904927450 hasConcept C199360897 @default.
- W2904927450 hasConcept C199539241 @default.
- W2904927450 hasConcept C202474056 @default.
- W2904927450 hasConcept C23431618 @default.
- W2904927450 hasConcept C2776359362 @default.
- W2904927450 hasConcept C2779803651 @default.
- W2904927450 hasConcept C2779843651 @default.
- W2904927450 hasConcept C28490314 @default.
- W2904927450 hasConcept C30814859 @default.
- W2904927450 hasConcept C31972630 @default.
- W2904927450 hasConcept C41008148 @default.
- W2904927450 hasConcept C65483669 @default.
- W2904927450 hasConcept C76155785 @default.
- W2904927450 hasConcept C94625758 @default.
- W2904927450 hasConcept C94915269 @default.
- W2904927450 hasConcept C99498987 @default.
- W2904927450 hasConceptScore W2904927450C108583219 @default.
- W2904927450 hasConceptScore W2904927450C111919701 @default.
- W2904927450 hasConceptScore W2904927450C115961682 @default.
- W2904927450 hasConceptScore W2904927450C118505674 @default.
- W2904927450 hasConceptScore W2904927450C153180895 @default.
- W2904927450 hasConceptScore W2904927450C154945302 @default.
- W2904927450 hasConceptScore W2904927450C163294075 @default.
- W2904927450 hasConceptScore W2904927450C17744445 @default.
- W2904927450 hasConceptScore W2904927450C199360897 @default.
- W2904927450 hasConceptScore W2904927450C199539241 @default.
- W2904927450 hasConceptScore W2904927450C202474056 @default.
- W2904927450 hasConceptScore W2904927450C23431618 @default.
- W2904927450 hasConceptScore W2904927450C2776359362 @default.
- W2904927450 hasConceptScore W2904927450C2779803651 @default.
- W2904927450 hasConceptScore W2904927450C2779843651 @default.
- W2904927450 hasConceptScore W2904927450C28490314 @default.
- W2904927450 hasConceptScore W2904927450C30814859 @default.
- W2904927450 hasConceptScore W2904927450C31972630 @default.
- W2904927450 hasConceptScore W2904927450C41008148 @default.
- W2904927450 hasConceptScore W2904927450C65483669 @default.
- W2904927450 hasConceptScore W2904927450C76155785 @default.
- W2904927450 hasConceptScore W2904927450C94625758 @default.
- W2904927450 hasConceptScore W2904927450C94915269 @default.
- W2904927450 hasConceptScore W2904927450C99498987 @default.
- W2904927450 hasLocation W29049274501 @default.
- W2904927450 hasOpenAccess W2904927450 @default.