Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904927891> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2904927891 endingPage "16" @default.
- W2904927891 startingPage "1" @default.
- W2904927891 abstract "There are many challenging impacts on real-time image classification problems like extraction of features from a noisy and uncertainty existence. Task-based feature extraction is not possible for all the cases; to overcome this automatic feature extraction is included in the layers of the deep neural network and stacked autoencoder (SAE), which improves classification accuracy and speed. In this paper image datasets such as MNIST are taken, and it is trained and tested using two different networks. The time consumed and accuracy during the training period are calculated for the MNIST images applying the DNN algorithm. On the other hand, a stacked autoencoder (SAE) is constructed which is trained one layer at a time. Here the SAE consist of three layers which are stacked together, and its parameters are varied in such a way that the constructed SAE outperforms the DNN model. The SAE model improves the validation set accuracy by a noticeable margin. This paper demonstrates the effectiveness of using the SAE model over DNN with the performance analysis of binary handwritten image with time and accuracy trade-off." @default.
- W2904927891 created "2018-12-22" @default.
- W2904927891 creator A5001496034 @default.
- W2904927891 creator A5035923730 @default.
- W2904927891 date "2018-12-15" @default.
- W2904927891 modified "2023-09-27" @default.
- W2904927891 title "Performance Analysis of Deep Neural Network and Stacked Autoencoder for Image Classification" @default.
- W2904927891 cites W2136922672 @default.
- W2904927891 cites W2557052937 @default.
- W2904927891 cites W2565516711 @default.
- W2904927891 cites W2589561664 @default.
- W2904927891 cites W2592600582 @default.
- W2904927891 cites W2750575765 @default.
- W2904927891 cites W2758187847 @default.
- W2904927891 cites W2767767449 @default.
- W2904927891 cites W2790011482 @default.
- W2904927891 cites W2919115771 @default.
- W2904927891 cites W3103320289 @default.
- W2904927891 doi "https://doi.org/10.1007/978-3-030-02674-5_1" @default.
- W2904927891 hasPublicationYear "2018" @default.
- W2904927891 type Work @default.
- W2904927891 sameAs 2904927891 @default.
- W2904927891 citedByCount "0" @default.
- W2904927891 crossrefType "book-chapter" @default.
- W2904927891 hasAuthorship W2904927891A5001496034 @default.
- W2904927891 hasAuthorship W2904927891A5035923730 @default.
- W2904927891 hasConcept C101738243 @default.
- W2904927891 hasConcept C108583219 @default.
- W2904927891 hasConcept C115961682 @default.
- W2904927891 hasConcept C119857082 @default.
- W2904927891 hasConcept C12267149 @default.
- W2904927891 hasConcept C138885662 @default.
- W2904927891 hasConcept C153180895 @default.
- W2904927891 hasConcept C154945302 @default.
- W2904927891 hasConcept C177264268 @default.
- W2904927891 hasConcept C190502265 @default.
- W2904927891 hasConcept C199360897 @default.
- W2904927891 hasConcept C2776401178 @default.
- W2904927891 hasConcept C41008148 @default.
- W2904927891 hasConcept C41895202 @default.
- W2904927891 hasConcept C50644808 @default.
- W2904927891 hasConcept C52622490 @default.
- W2904927891 hasConcept C66905080 @default.
- W2904927891 hasConcept C75294576 @default.
- W2904927891 hasConcept C774472 @default.
- W2904927891 hasConceptScore W2904927891C101738243 @default.
- W2904927891 hasConceptScore W2904927891C108583219 @default.
- W2904927891 hasConceptScore W2904927891C115961682 @default.
- W2904927891 hasConceptScore W2904927891C119857082 @default.
- W2904927891 hasConceptScore W2904927891C12267149 @default.
- W2904927891 hasConceptScore W2904927891C138885662 @default.
- W2904927891 hasConceptScore W2904927891C153180895 @default.
- W2904927891 hasConceptScore W2904927891C154945302 @default.
- W2904927891 hasConceptScore W2904927891C177264268 @default.
- W2904927891 hasConceptScore W2904927891C190502265 @default.
- W2904927891 hasConceptScore W2904927891C199360897 @default.
- W2904927891 hasConceptScore W2904927891C2776401178 @default.
- W2904927891 hasConceptScore W2904927891C41008148 @default.
- W2904927891 hasConceptScore W2904927891C41895202 @default.
- W2904927891 hasConceptScore W2904927891C50644808 @default.
- W2904927891 hasConceptScore W2904927891C52622490 @default.
- W2904927891 hasConceptScore W2904927891C66905080 @default.
- W2904927891 hasConceptScore W2904927891C75294576 @default.
- W2904927891 hasConceptScore W2904927891C774472 @default.
- W2904927891 hasLocation W29049278911 @default.
- W2904927891 hasOpenAccess W2904927891 @default.
- W2904927891 hasPrimaryLocation W29049278911 @default.
- W2904927891 hasRelatedWork W2371395634 @default.
- W2904927891 hasRelatedWork W2625436554 @default.
- W2904927891 hasRelatedWork W2760085659 @default.
- W2904927891 hasRelatedWork W2785535669 @default.
- W2904927891 hasRelatedWork W2904927891 @default.
- W2904927891 hasRelatedWork W3154474343 @default.
- W2904927891 hasRelatedWork W3208181716 @default.
- W2904927891 hasRelatedWork W4221015625 @default.
- W2904927891 hasRelatedWork W4226315055 @default.
- W2904927891 hasRelatedWork W4285816666 @default.
- W2904927891 isParatext "false" @default.
- W2904927891 isRetracted "false" @default.
- W2904927891 magId "2904927891" @default.
- W2904927891 workType "book-chapter" @default.