Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904953191> ?p ?o ?g. }
- W2904953191 endingPage "423" @default.
- W2904953191 startingPage "409" @default.
- W2904953191 abstract "Set similarity search is a fundamental operation in a variety of applications. While many previous studies focus on threshold based set similarity search and join, few efforts have been paid for KNN set similarity search. In this paper, we propose a transformation based framework to solve the problem of KNN set similarity search, which given a collection of set records and a query set, returns k results with the largest similarity to the query. We devise an effective transformation mechanism to transform sets with various lengths to fixed length vectors which can map similar sets closer to each other. Then, we index such vectors with a tiny tree structure. Next, we propose efficient search algorithms and pruning strategies to perform exact KNN set similarity search. We also design an estimation technique by leveraging the data distribution to support approximate KNN search, which can speed up the search while retaining high recall. Experimental results on real world datasets show that our framework significantly outperforms state-of-the-art methods in both memory and disk based settings." @default.
- W2904953191 created "2018-12-22" @default.
- W2904953191 creator A5046216110 @default.
- W2904953191 creator A5058043497 @default.
- W2904953191 creator A5069003095 @default.
- W2904953191 creator A5070290579 @default.
- W2904953191 date "2020-03-01" @default.
- W2904953191 modified "2023-10-03" @default.
- W2904953191 title "A Transformation-Based Framework for KNN Set Similarity Search" @default.
- W2904953191 cites W1536525420 @default.
- W2904953191 cites W1991800036 @default.
- W2904953191 cites W2037046020 @default.
- W2904953191 cites W2052482648 @default.
- W2904953191 cites W2062153469 @default.
- W2904953191 cites W2066577300 @default.
- W2904953191 cites W2073329022 @default.
- W2904953191 cites W2093270024 @default.
- W2904953191 cites W2097184821 @default.
- W2904953191 cites W2097776316 @default.
- W2904953191 cites W2105436061 @default.
- W2904953191 cites W2113875810 @default.
- W2904953191 cites W2118269922 @default.
- W2904953191 cites W2121516976 @default.
- W2904953191 cites W2130825214 @default.
- W2904953191 cites W2138271690 @default.
- W2904953191 cites W2148148676 @default.
- W2904953191 cites W2151135734 @default.
- W2904953191 cites W2151930506 @default.
- W2904953191 cites W2167847032 @default.
- W2904953191 cites W2217456271 @default.
- W2904953191 cites W2294331997 @default.
- W2904953191 cites W2396588571 @default.
- W2904953191 cites W2438218466 @default.
- W2904953191 cites W2615658008 @default.
- W2904953191 cites W2619410666 @default.
- W2904953191 cites W3105727767 @default.
- W2904953191 cites W4234792271 @default.
- W2904953191 cites W642889137 @default.
- W2904953191 doi "https://doi.org/10.1109/tkde.2018.2886189" @default.
- W2904953191 hasPublicationYear "2020" @default.
- W2904953191 type Work @default.
- W2904953191 sameAs 2904953191 @default.
- W2904953191 citedByCount "27" @default.
- W2904953191 countsByYear W29049531912019 @default.
- W2904953191 countsByYear W29049531912020 @default.
- W2904953191 countsByYear W29049531912021 @default.
- W2904953191 countsByYear W29049531912022 @default.
- W2904953191 countsByYear W29049531912023 @default.
- W2904953191 crossrefType "journal-article" @default.
- W2904953191 hasAuthorship W2904953191A5046216110 @default.
- W2904953191 hasAuthorship W2904953191A5058043497 @default.
- W2904953191 hasAuthorship W2904953191A5069003095 @default.
- W2904953191 hasAuthorship W2904953191A5070290579 @default.
- W2904953191 hasConcept C103278499 @default.
- W2904953191 hasConcept C104047586 @default.
- W2904953191 hasConcept C104317684 @default.
- W2904953191 hasConcept C108010975 @default.
- W2904953191 hasConcept C115961682 @default.
- W2904953191 hasConcept C116738811 @default.
- W2904953191 hasConcept C124101348 @default.
- W2904953191 hasConcept C153180895 @default.
- W2904953191 hasConcept C154945302 @default.
- W2904953191 hasConcept C177264268 @default.
- W2904953191 hasConcept C185592680 @default.
- W2904953191 hasConcept C199360897 @default.
- W2904953191 hasConcept C204241405 @default.
- W2904953191 hasConcept C41008148 @default.
- W2904953191 hasConcept C4969071 @default.
- W2904953191 hasConcept C53661774 @default.
- W2904953191 hasConcept C55493867 @default.
- W2904953191 hasConcept C6557445 @default.
- W2904953191 hasConcept C73555534 @default.
- W2904953191 hasConcept C75165309 @default.
- W2904953191 hasConcept C81669768 @default.
- W2904953191 hasConcept C86803240 @default.
- W2904953191 hasConcept C94641424 @default.
- W2904953191 hasConceptScore W2904953191C103278499 @default.
- W2904953191 hasConceptScore W2904953191C104047586 @default.
- W2904953191 hasConceptScore W2904953191C104317684 @default.
- W2904953191 hasConceptScore W2904953191C108010975 @default.
- W2904953191 hasConceptScore W2904953191C115961682 @default.
- W2904953191 hasConceptScore W2904953191C116738811 @default.
- W2904953191 hasConceptScore W2904953191C124101348 @default.
- W2904953191 hasConceptScore W2904953191C153180895 @default.
- W2904953191 hasConceptScore W2904953191C154945302 @default.
- W2904953191 hasConceptScore W2904953191C177264268 @default.
- W2904953191 hasConceptScore W2904953191C185592680 @default.
- W2904953191 hasConceptScore W2904953191C199360897 @default.
- W2904953191 hasConceptScore W2904953191C204241405 @default.
- W2904953191 hasConceptScore W2904953191C41008148 @default.
- W2904953191 hasConceptScore W2904953191C4969071 @default.
- W2904953191 hasConceptScore W2904953191C53661774 @default.
- W2904953191 hasConceptScore W2904953191C55493867 @default.
- W2904953191 hasConceptScore W2904953191C6557445 @default.
- W2904953191 hasConceptScore W2904953191C73555534 @default.
- W2904953191 hasConceptScore W2904953191C75165309 @default.
- W2904953191 hasConceptScore W2904953191C81669768 @default.
- W2904953191 hasConceptScore W2904953191C86803240 @default.