Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904987639> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2904987639 abstract "Traffic panels contain rich text and symbolic information for transportation and scene understanding. In order to understand the information in panels, fast and robust extraction of the text and symbol is a crucial and essential step. This problem cannot be solved using generic scene text detection methods due to the special layout characteristics, especially in Chinese panels. In this paper, we propose a fast and robust approach for Chinese text and symbol extraction in traffic panels from natural scene images. Given a traffic panel in natural scene, Contrasting Extremal Region (CER) algorithm is applied to extract character candidates which are further filtered by boosting classifier using Histogram Orientation Gradient Features. Since Chinese characters often consist of multiple isolated strokes, a hierarchical clustering process of stroke components is carried out to group isolated strokes into characters using the detected characters as seeds. Next, the Chinese text lines are formed by Distance Metric Learning (DSL) method. In consideration that traffic symbols do not possibly appear in the location of texts, symbols are extracted using two stages boosting classifier after text detection. Experimental results on real traffic images from Baidu Street View demonstrate the effectiveness of the proposed method." @default.
- W2904987639 created "2018-12-22" @default.
- W2904987639 creator A5067796804 @default.
- W2904987639 creator A5069312371 @default.
- W2904987639 date "2017-11-01" @default.
- W2904987639 modified "2023-09-26" @default.
- W2904987639 title "Text and Symbol Extraction in Traffic Panel from Natural Scene Images" @default.
- W2904987639 cites W1126979639 @default.
- W2904987639 cites W1584768298 @default.
- W2904987639 cites W2000037265 @default.
- W2904987639 cites W2008806374 @default.
- W2904987639 cites W2012112601 @default.
- W2904987639 cites W2019478948 @default.
- W2904987639 cites W2020964295 @default.
- W2904987639 cites W2030138018 @default.
- W2904987639 cites W2073467609 @default.
- W2904987639 cites W2078997308 @default.
- W2904987639 cites W2101627831 @default.
- W2904987639 cites W2102605133 @default.
- W2904987639 cites W2124404372 @default.
- W2904987639 cites W2135231474 @default.
- W2904987639 cites W2142159465 @default.
- W2904987639 cites W2144554289 @default.
- W2904987639 cites W2148214126 @default.
- W2904987639 cites W2161969291 @default.
- W2904987639 cites W2239285313 @default.
- W2904987639 cites W2245166388 @default.
- W2904987639 cites W2293634267 @default.
- W2904987639 cites W2333563142 @default.
- W2904987639 cites W2344822769 @default.
- W2904987639 cites W2468724597 @default.
- W2904987639 cites W2519321174 @default.
- W2904987639 cites W2963037989 @default.
- W2904987639 cites W70975097 @default.
- W2904987639 doi "https://doi.org/10.1109/acpr.2017.71" @default.
- W2904987639 hasPublicationYear "2017" @default.
- W2904987639 type Work @default.
- W2904987639 sameAs 2904987639 @default.
- W2904987639 citedByCount "0" @default.
- W2904987639 crossrefType "proceedings-article" @default.
- W2904987639 hasAuthorship W2904987639A5067796804 @default.
- W2904987639 hasAuthorship W2904987639A5069312371 @default.
- W2904987639 hasConcept C115961682 @default.
- W2904987639 hasConcept C134400042 @default.
- W2904987639 hasConcept C153180895 @default.
- W2904987639 hasConcept C154945302 @default.
- W2904987639 hasConcept C199360897 @default.
- W2904987639 hasConcept C204321447 @default.
- W2904987639 hasConcept C31972630 @default.
- W2904987639 hasConcept C41008148 @default.
- W2904987639 hasConcept C46686674 @default.
- W2904987639 hasConcept C52622490 @default.
- W2904987639 hasConcept C53533937 @default.
- W2904987639 hasConcept C73555534 @default.
- W2904987639 hasConcept C95623464 @default.
- W2904987639 hasConceptScore W2904987639C115961682 @default.
- W2904987639 hasConceptScore W2904987639C134400042 @default.
- W2904987639 hasConceptScore W2904987639C153180895 @default.
- W2904987639 hasConceptScore W2904987639C154945302 @default.
- W2904987639 hasConceptScore W2904987639C199360897 @default.
- W2904987639 hasConceptScore W2904987639C204321447 @default.
- W2904987639 hasConceptScore W2904987639C31972630 @default.
- W2904987639 hasConceptScore W2904987639C41008148 @default.
- W2904987639 hasConceptScore W2904987639C46686674 @default.
- W2904987639 hasConceptScore W2904987639C52622490 @default.
- W2904987639 hasConceptScore W2904987639C53533937 @default.
- W2904987639 hasConceptScore W2904987639C73555534 @default.
- W2904987639 hasConceptScore W2904987639C95623464 @default.
- W2904987639 hasLocation W29049876391 @default.
- W2904987639 hasOpenAccess W2904987639 @default.
- W2904987639 hasPrimaryLocation W29049876391 @default.
- W2904987639 hasRelatedWork W1601191738 @default.
- W2904987639 hasRelatedWork W1637887093 @default.
- W2904987639 hasRelatedWork W1970370825 @default.
- W2904987639 hasRelatedWork W2037112354 @default.
- W2904987639 hasRelatedWork W2138375583 @default.
- W2904987639 hasRelatedWork W2155725801 @default.
- W2904987639 hasRelatedWork W2185795341 @default.
- W2904987639 hasRelatedWork W2210071835 @default.
- W2904987639 hasRelatedWork W2239285313 @default.
- W2904987639 hasRelatedWork W2540378278 @default.
- W2904987639 hasRelatedWork W2546712928 @default.
- W2904987639 hasRelatedWork W2560942693 @default.
- W2904987639 hasRelatedWork W2597870635 @default.
- W2904987639 hasRelatedWork W2612065540 @default.
- W2904987639 hasRelatedWork W2765824611 @default.
- W2904987639 hasRelatedWork W2771203567 @default.
- W2904987639 hasRelatedWork W2782630096 @default.
- W2904987639 hasRelatedWork W2793690470 @default.
- W2904987639 hasRelatedWork W3095597810 @default.
- W2904987639 hasRelatedWork W1569365055 @default.
- W2904987639 isParatext "false" @default.
- W2904987639 isRetracted "false" @default.
- W2904987639 magId "2904987639" @default.
- W2904987639 workType "article" @default.