Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904990417> ?p ?o ?g. }
- W2904990417 endingPage "420" @default.
- W2904990417 startingPage "409" @default.
- W2904990417 abstract "Poisson–Boltzmann equation (PBE) based continuum electrostatics models have been widely used in modeling electrostatic interactions in biochemical processes, particularly in estimating protein–ligand binding affinities. Fast convergence of PBE solvers is crucial in binding affinity computations as numerous snapshots need to be processed. Efforts have been reported to develop PBE solvers on graphics processing units (GPUs) for efficient modeling of biomolecules, though only relatively simple successive over-relaxation and conjugate gradient methods were implemented. However, neither convergence nor scaling properties of the two methods are optimal for large biomolecules. On the other hand, geometric multigrid (MG) has been shown to be an optimal solver on CPUs, though no MG have been reported for biomolecular applications on GPUs. This is not a surprise as it is a more complex method and depends on simpler but limited iterative methods such as Gauss–Seidel in its core relaxation procedure. The robustness and efficiency of MG on GPUs are also unclear. Here we present an implementation and a thorough analysis of MG on GPUs. Our analysis shows that robustness is a more pronounced issue than efficiency for both MG and other tested solvers when the single precision is used for complex biomolecules. We further show how to balance robustness and efficiency utilizing MG’s overall efficiency and conjugate gradient’s robustness, pointing to a hybrid GPU solver with a good balance of efficiency and accuracy. The new PBE solver will significantly improve the computational throughput for a range of biomolecular applications on the GPU platforms." @default.
- W2904990417 created "2018-12-22" @default.
- W2904990417 creator A5012214235 @default.
- W2904990417 creator A5032088629 @default.
- W2904990417 date "2018-12-14" @default.
- W2904990417 modified "2023-10-18" @default.
- W2904990417 title "Robustness and Efficiency of Poisson–Boltzmann Modeling on Graphics Processing Units" @default.
- W2904990417 cites W122715520 @default.
- W2904990417 cites W1862644536 @default.
- W2904990417 cites W1902949370 @default.
- W2904990417 cites W1964614899 @default.
- W2904990417 cites W1967468998 @default.
- W2904990417 cites W1968984443 @default.
- W2904990417 cites W1968997586 @default.
- W2904990417 cites W1969912980 @default.
- W2904990417 cites W1970036918 @default.
- W2904990417 cites W1973060079 @default.
- W2904990417 cites W1973819621 @default.
- W2904990417 cites W1975289752 @default.
- W2904990417 cites W1975580333 @default.
- W2904990417 cites W1978291408 @default.
- W2904990417 cites W1978330227 @default.
- W2904990417 cites W1979891593 @default.
- W2904990417 cites W1984223438 @default.
- W2904990417 cites W1984738107 @default.
- W2904990417 cites W1986899369 @default.
- W2904990417 cites W1987354604 @default.
- W2904990417 cites W1994662101 @default.
- W2904990417 cites W1994737524 @default.
- W2904990417 cites W1995204277 @default.
- W2904990417 cites W1995842153 @default.
- W2904990417 cites W1997240546 @default.
- W2904990417 cites W1997542937 @default.
- W2904990417 cites W1998208404 @default.
- W2904990417 cites W1998461805 @default.
- W2904990417 cites W1999072167 @default.
- W2904990417 cites W1999245179 @default.
- W2904990417 cites W2000613080 @default.
- W2904990417 cites W2004145462 @default.
- W2904990417 cites W2004822259 @default.
- W2904990417 cites W2005040897 @default.
- W2904990417 cites W2007095477 @default.
- W2904990417 cites W2007258535 @default.
- W2904990417 cites W2007965478 @default.
- W2904990417 cites W2008015300 @default.
- W2904990417 cites W2008246496 @default.
- W2904990417 cites W2009250131 @default.
- W2904990417 cites W2014511343 @default.
- W2904990417 cites W2016168728 @default.
- W2904990417 cites W2016494318 @default.
- W2904990417 cites W2020613906 @default.
- W2904990417 cites W2021534482 @default.
- W2904990417 cites W2025694445 @default.
- W2904990417 cites W2026467865 @default.
- W2904990417 cites W2028031397 @default.
- W2904990417 cites W2029582401 @default.
- W2904990417 cites W2029615301 @default.
- W2904990417 cites W2029788853 @default.
- W2904990417 cites W2033231433 @default.
- W2904990417 cites W2034615763 @default.
- W2904990417 cites W2035629195 @default.
- W2904990417 cites W2036011280 @default.
- W2904990417 cites W2036766784 @default.
- W2904990417 cites W2036856453 @default.
- W2904990417 cites W2039665613 @default.
- W2904990417 cites W2039833566 @default.
- W2904990417 cites W2040530457 @default.
- W2904990417 cites W2041113042 @default.
- W2904990417 cites W2041248383 @default.
- W2904990417 cites W2044701646 @default.
- W2904990417 cites W2045367749 @default.
- W2904990417 cites W2048574808 @default.
- W2904990417 cites W2048744137 @default.
- W2904990417 cites W2048931055 @default.
- W2904990417 cites W2050397044 @default.
- W2904990417 cites W2056070858 @default.
- W2904990417 cites W2056940848 @default.
- W2904990417 cites W2057664120 @default.
- W2904990417 cites W2060098509 @default.
- W2904990417 cites W2060304556 @default.
- W2904990417 cites W2060815747 @default.
- W2904990417 cites W2062056446 @default.
- W2904990417 cites W2062224822 @default.
- W2904990417 cites W2063292547 @default.
- W2904990417 cites W2064388657 @default.
- W2904990417 cites W2064709968 @default.
- W2904990417 cites W2066126934 @default.
- W2904990417 cites W2067525890 @default.
- W2904990417 cites W2068465600 @default.
- W2904990417 cites W2070126787 @default.
- W2904990417 cites W2073146967 @default.
- W2904990417 cites W2074674539 @default.
- W2904990417 cites W2075662564 @default.
- W2904990417 cites W2076057716 @default.
- W2904990417 cites W2081588627 @default.
- W2904990417 cites W2082127026 @default.
- W2904990417 cites W2083665636 @default.
- W2904990417 cites W2085813531 @default.