Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904992679> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2904992679 endingPage "115" @default.
- W2904992679 startingPage "100" @default.
- W2904992679 abstract "Abstract This paper presents the Modified Grey Wolf Optimization (MGWO) algorithm which helps with the identification of the symptoms of Parkinson’s disease at a premature stage. Parkinson disease is kind of a movement malady, which if not cured timely can prove to be fatal. Thus it becomes significant to identify Parkinson’s disease at its premature phase so proper medications can provide longevity to patient by controlling the symptoms. In this work, a new model named Modified Grey Wolf Optimization (MGWO) has been proposed grounded on the traditional Grey Wolf Optimizer (GWO), which acts as a search strategy for feature selection. GWO is a meta-heuristic algorithm which is enthused by hunt down behavior of wolves. Random forest, k-nearest neighbor classifier and decision tree espy on selected features. The proposed model is evaluated using various types of datasets of voice, handwriting (spiral and meander) and speech. The put forward algorithm helps in the prediction of Parkinson disease with an estimated accuracy of 94.83%, detection rate of 98.28%, false alarm rate of 16.03% and further aid the individuals to receive a functional treatment at an early stage. The proposed bio-inspired algorithm is stable enough to find out the optimal subset of features. At last the results derived from the evaluation of proposed algorithm on datasets are compared with the results of Optimized Cuttlefish Algorithm (OCFA). The experimental results depict that the proposed algorithm helps in maximizing the accurateness and minimizing the number of features selected." @default.
- W2904992679 created "2018-12-22" @default.
- W2904992679 creator A5003777638 @default.
- W2904992679 creator A5006327684 @default.
- W2904992679 creator A5034853815 @default.
- W2904992679 creator A5045879377 @default.
- W2904992679 creator A5085473486 @default.
- W2904992679 date "2019-05-01" @default.
- W2904992679 modified "2023-09-29" @default.
- W2904992679 title "Diagnosis of Parkinson’s disease using modified grey wolf optimization" @default.
- W2904992679 cites W2034730629 @default.
- W2904992679 cites W2037760741 @default.
- W2904992679 cites W2054976755 @default.
- W2904992679 cites W2100534701 @default.
- W2904992679 cites W2154562892 @default.
- W2904992679 cites W2326536142 @default.
- W2904992679 cites W2440682802 @default.
- W2904992679 cites W2469407437 @default.
- W2904992679 cites W2507652798 @default.
- W2904992679 cites W2509434949 @default.
- W2904992679 cites W2586433286 @default.
- W2904992679 cites W2700621456 @default.
- W2904992679 cites W2773471941 @default.
- W2904992679 cites W2782169620 @default.
- W2904992679 cites W2784792583 @default.
- W2904992679 cites W2790729248 @default.
- W2904992679 cites W2799456480 @default.
- W2904992679 cites W2800287564 @default.
- W2904992679 cites W2800951337 @default.
- W2904992679 cites W2801593015 @default.
- W2904992679 cites W2805677640 @default.
- W2904992679 cites W2808891523 @default.
- W2904992679 cites W2810965170 @default.
- W2904992679 cites W2887714298 @default.
- W2904992679 cites W2890197985 @default.
- W2904992679 cites W2891686988 @default.
- W2904992679 cites W2891772427 @default.
- W2904992679 cites W2893164490 @default.
- W2904992679 doi "https://doi.org/10.1016/j.cogsys.2018.12.002" @default.
- W2904992679 hasPublicationYear "2019" @default.
- W2904992679 type Work @default.
- W2904992679 sameAs 2904992679 @default.
- W2904992679 citedByCount "93" @default.
- W2904992679 countsByYear W29049926792019 @default.
- W2904992679 countsByYear W29049926792020 @default.
- W2904992679 countsByYear W29049926792021 @default.
- W2904992679 countsByYear W29049926792022 @default.
- W2904992679 countsByYear W29049926792023 @default.
- W2904992679 crossrefType "journal-article" @default.
- W2904992679 hasAuthorship W2904992679A5003777638 @default.
- W2904992679 hasAuthorship W2904992679A5006327684 @default.
- W2904992679 hasAuthorship W2904992679A5034853815 @default.
- W2904992679 hasAuthorship W2904992679A5045879377 @default.
- W2904992679 hasAuthorship W2904992679A5085473486 @default.
- W2904992679 hasConcept C142724271 @default.
- W2904992679 hasConcept C154945302 @default.
- W2904992679 hasConcept C2779134260 @default.
- W2904992679 hasConcept C2779734285 @default.
- W2904992679 hasConcept C41008148 @default.
- W2904992679 hasConcept C71924100 @default.
- W2904992679 hasConceptScore W2904992679C142724271 @default.
- W2904992679 hasConceptScore W2904992679C154945302 @default.
- W2904992679 hasConceptScore W2904992679C2779134260 @default.
- W2904992679 hasConceptScore W2904992679C2779734285 @default.
- W2904992679 hasConceptScore W2904992679C41008148 @default.
- W2904992679 hasConceptScore W2904992679C71924100 @default.
- W2904992679 hasLocation W29049926791 @default.
- W2904992679 hasOpenAccess W2904992679 @default.
- W2904992679 hasPrimaryLocation W29049926791 @default.
- W2904992679 hasRelatedWork W2082482010 @default.
- W2904992679 hasRelatedWork W2416973532 @default.
- W2904992679 hasRelatedWork W2609134097 @default.
- W2904992679 hasRelatedWork W2748952813 @default.
- W2904992679 hasRelatedWork W2899084033 @default.
- W2904992679 hasRelatedWork W3088070796 @default.
- W2904992679 hasRelatedWork W3107474891 @default.
- W2904992679 hasRelatedWork W3116665257 @default.
- W2904992679 hasRelatedWork W3134596587 @default.
- W2904992679 hasRelatedWork W3216329096 @default.
- W2904992679 hasVolume "54" @default.
- W2904992679 isParatext "false" @default.
- W2904992679 isRetracted "false" @default.
- W2904992679 magId "2904992679" @default.
- W2904992679 workType "article" @default.