Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904994387> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2904994387 endingPage "239" @default.
- W2904994387 startingPage "229" @default.
- W2904994387 abstract "Educational Data Mining (EDM) is an emerging field that is concerned with mining and exploring the useful patterns in educational data. The main objective of this study is to predict the students’ academic performance based on a new dataset extracted from a student information system. The dataset was extracted from a private university in the United Arab of Emirates (UAE). The dataset includes 34 attributes and 56,000 records related to students’ information. The empirical results indicated that the Random Forest (RF) algorithm was the most appropriate data mining technique used to predict the students’ academic performance. It is also revealed that the most important attributes that have a direct effect on the students’ academic performance are belonged to four main categories, namely students’ demographics, student previous performance information, course and instructor information, and student general information. The evidence from this study would assist the higher educational institutions by allowing the instructors and students to identify the weaknesses and factors affecting the students’ performance, and act as an early warning system for predicting the students’ failures and low academic performance." @default.
- W2904994387 created "2018-12-22" @default.
- W2904994387 creator A5006979108 @default.
- W2904994387 creator A5021304208 @default.
- W2904994387 creator A5066945309 @default.
- W2904994387 date "2019-03-17" @default.
- W2904994387 modified "2023-09-29" @default.
- W2904994387 title "Mining Student Information System Records to Predict Students’ Academic Performance" @default.
- W2904994387 cites W1874146120 @default.
- W2904994387 cites W2006444123 @default.
- W2904994387 cites W2049868504 @default.
- W2904994387 cites W2089892729 @default.
- W2904994387 cites W2114073252 @default.
- W2904994387 cites W2135080565 @default.
- W2904994387 cites W2145445683 @default.
- W2904994387 cites W2218710975 @default.
- W2904994387 cites W2236997391 @default.
- W2904994387 cites W2255539840 @default.
- W2904994387 cites W2390567443 @default.
- W2904994387 cites W2417280899 @default.
- W2904994387 cites W2610937328 @default.
- W2904994387 cites W2617300785 @default.
- W2904994387 cites W2735030558 @default.
- W2904994387 cites W2751031616 @default.
- W2904994387 cites W2768942284 @default.
- W2904994387 cites W2770339950 @default.
- W2904994387 cites W2789308566 @default.
- W2904994387 cites W4249749461 @default.
- W2904994387 doi "https://doi.org/10.1007/978-3-030-14118-9_23" @default.
- W2904994387 hasPublicationYear "2019" @default.
- W2904994387 type Work @default.
- W2904994387 sameAs 2904994387 @default.
- W2904994387 citedByCount "30" @default.
- W2904994387 countsByYear W29049943872019 @default.
- W2904994387 countsByYear W29049943872020 @default.
- W2904994387 countsByYear W29049943872021 @default.
- W2904994387 countsByYear W29049943872022 @default.
- W2904994387 countsByYear W29049943872023 @default.
- W2904994387 crossrefType "book-chapter" @default.
- W2904994387 hasAuthorship W2904994387A5006979108 @default.
- W2904994387 hasAuthorship W2904994387A5021304208 @default.
- W2904994387 hasAuthorship W2904994387A5066945309 @default.
- W2904994387 hasConcept C144024400 @default.
- W2904994387 hasConcept C145420912 @default.
- W2904994387 hasConcept C149923435 @default.
- W2904994387 hasConcept C154945302 @default.
- W2904994387 hasConcept C15744967 @default.
- W2904994387 hasConcept C169258074 @default.
- W2904994387 hasConcept C202444582 @default.
- W2904994387 hasConcept C2522767166 @default.
- W2904994387 hasConcept C2777598771 @default.
- W2904994387 hasConcept C2780084366 @default.
- W2904994387 hasConcept C33923547 @default.
- W2904994387 hasConcept C41008148 @default.
- W2904994387 hasConcept C9652623 @default.
- W2904994387 hasConceptScore W2904994387C144024400 @default.
- W2904994387 hasConceptScore W2904994387C145420912 @default.
- W2904994387 hasConceptScore W2904994387C149923435 @default.
- W2904994387 hasConceptScore W2904994387C154945302 @default.
- W2904994387 hasConceptScore W2904994387C15744967 @default.
- W2904994387 hasConceptScore W2904994387C169258074 @default.
- W2904994387 hasConceptScore W2904994387C202444582 @default.
- W2904994387 hasConceptScore W2904994387C2522767166 @default.
- W2904994387 hasConceptScore W2904994387C2777598771 @default.
- W2904994387 hasConceptScore W2904994387C2780084366 @default.
- W2904994387 hasConceptScore W2904994387C33923547 @default.
- W2904994387 hasConceptScore W2904994387C41008148 @default.
- W2904994387 hasConceptScore W2904994387C9652623 @default.
- W2904994387 hasLocation W29049943871 @default.
- W2904994387 hasOpenAccess W2904994387 @default.
- W2904994387 hasPrimaryLocation W29049943871 @default.
- W2904994387 hasRelatedWork W1474740690 @default.
- W2904994387 hasRelatedWork W2053868870 @default.
- W2904994387 hasRelatedWork W2138334515 @default.
- W2904994387 hasRelatedWork W2546779449 @default.
- W2904994387 hasRelatedWork W3126338254 @default.
- W2904994387 hasRelatedWork W4210461813 @default.
- W2904994387 hasRelatedWork W4281559401 @default.
- W2904994387 hasRelatedWork W4308093190 @default.
- W2904994387 hasRelatedWork W4318428506 @default.
- W2904994387 hasRelatedWork W2411362804 @default.
- W2904994387 isParatext "false" @default.
- W2904994387 isRetracted "false" @default.
- W2904994387 magId "2904994387" @default.
- W2904994387 workType "book-chapter" @default.