Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904995992> ?p ?o ?g. }
- W2904995992 abstract "Weak gravitational lensing is a powerful probe of the large-scale cosmic matter distribution. Wide-field galaxy surveys allow us to generate the so-called weak lensing maps, but actual observations suffer from noise due to imperfect measurement of galaxy shape distortions and to the limited number density of the source galaxies. In this paper, we explore a deep-learning approach to reduce the noise. We develop an image-to-image translation method with conditional adversarial networks (CANs), which learn efficient mapping from an input noisy weak lensing map to the underlying noise field. We train the CANs using $30000$ image pairs obtained from $1000$ ray-tracing simulations of weak gravitational lensing. We show that the trained CANs reproduce the true one-point probability distribution function (PDF) of the noiseless lensing map with a bias less than $1sigma$ on average, where $sigma$ is the statistical error. We perform a Fisher analysis to make forecast for cosmological parameter inference with the one-point lensing PDF. By our denoising method using CANs, the first derivative of the PDF with respect to the cosmic mean matter density and the amplitude of the primordial curvature perturbations becomes larger by $sim50%$. This allows us to improve the cosmological constraints by $sim30-40%$ with using observational data from ongoing and upcoming galaxy imaging surveys." @default.
- W2904995992 created "2018-12-22" @default.
- W2904995992 creator A5069245169 @default.
- W2904995992 creator A5082106553 @default.
- W2904995992 creator A5082222523 @default.
- W2904995992 date "2019-08-16" @default.
- W2904995992 modified "2023-10-03" @default.
- W2904995992 title "Denoising weak lensing mass maps with deep learning" @default.
- W2904995992 cites W1598259264 @default.
- W2904995992 cites W1599554795 @default.
- W2904995992 cites W1973697054 @default.
- W2904995992 cites W1974425044 @default.
- W2904995992 cites W2002468929 @default.
- W2904995992 cites W2019632433 @default.
- W2904995992 cites W2030313587 @default.
- W2904995992 cites W2032261644 @default.
- W2904995992 cites W2032901825 @default.
- W2904995992 cites W2045456075 @default.
- W2904995992 cites W2048053261 @default.
- W2904995992 cites W2050130030 @default.
- W2904995992 cites W2097698806 @default.
- W2904995992 cites W2107595932 @default.
- W2904995992 cites W2120209413 @default.
- W2904995992 cites W2133768772 @default.
- W2904995992 cites W2141449818 @default.
- W2904995992 cites W2144772031 @default.
- W2904995992 cites W2153719234 @default.
- W2904995992 cites W2155837149 @default.
- W2904995992 cites W2166773837 @default.
- W2904995992 cites W2294785857 @default.
- W2904995992 cites W2763843986 @default.
- W2904995992 cites W2785975107 @default.
- W2904995992 cites W2787427854 @default.
- W2904995992 cites W2895127322 @default.
- W2904995992 cites W2897868884 @default.
- W2904995992 cites W3099908072 @default.
- W2904995992 cites W3101239211 @default.
- W2904995992 cites W3101295238 @default.
- W2904995992 cites W3101960178 @default.
- W2904995992 cites W3102082949 @default.
- W2904995992 cites W3102276726 @default.
- W2904995992 cites W3102324715 @default.
- W2904995992 cites W3102705223 @default.
- W2904995992 cites W3103141574 @default.
- W2904995992 cites W3103284230 @default.
- W2904995992 cites W3103711115 @default.
- W2904995992 cites W3104028496 @default.
- W2904995992 cites W3104302101 @default.
- W2904995992 cites W3104932342 @default.
- W2904995992 cites W3105467575 @default.
- W2904995992 cites W3106099555 @default.
- W2904995992 cites W3106522028 @default.
- W2904995992 cites W3122474639 @default.
- W2904995992 cites W3122580891 @default.
- W2904995992 cites W3124578916 @default.
- W2904995992 cites W4298854946 @default.
- W2904995992 doi "https://doi.org/10.1103/physrevd.100.043527" @default.
- W2904995992 hasPublicationYear "2019" @default.
- W2904995992 type Work @default.
- W2904995992 sameAs 2904995992 @default.
- W2904995992 citedByCount "23" @default.
- W2904995992 countsByYear W29049959922017 @default.
- W2904995992 countsByYear W29049959922019 @default.
- W2904995992 countsByYear W29049959922020 @default.
- W2904995992 countsByYear W29049959922021 @default.
- W2904995992 countsByYear W29049959922022 @default.
- W2904995992 countsByYear W29049959922023 @default.
- W2904995992 crossrefType "journal-article" @default.
- W2904995992 hasAuthorship W2904995992A5069245169 @default.
- W2904995992 hasAuthorship W2904995992A5082106553 @default.
- W2904995992 hasAuthorship W2904995992A5082222523 @default.
- W2904995992 hasBestOaLocation W29049959921 @default.
- W2904995992 hasConcept C115961682 @default.
- W2904995992 hasConcept C121332964 @default.
- W2904995992 hasConcept C121864883 @default.
- W2904995992 hasConcept C134222618 @default.
- W2904995992 hasConcept C138125448 @default.
- W2904995992 hasConcept C154945302 @default.
- W2904995992 hasConcept C159249277 @default.
- W2904995992 hasConcept C190670322 @default.
- W2904995992 hasConcept C33024259 @default.
- W2904995992 hasConcept C38437897 @default.
- W2904995992 hasConcept C41008148 @default.
- W2904995992 hasConcept C44870925 @default.
- W2904995992 hasConcept C68498078 @default.
- W2904995992 hasConcept C98444146 @default.
- W2904995992 hasConcept C99498987 @default.
- W2904995992 hasConceptScore W2904995992C115961682 @default.
- W2904995992 hasConceptScore W2904995992C121332964 @default.
- W2904995992 hasConceptScore W2904995992C121864883 @default.
- W2904995992 hasConceptScore W2904995992C134222618 @default.
- W2904995992 hasConceptScore W2904995992C138125448 @default.
- W2904995992 hasConceptScore W2904995992C154945302 @default.
- W2904995992 hasConceptScore W2904995992C159249277 @default.
- W2904995992 hasConceptScore W2904995992C190670322 @default.
- W2904995992 hasConceptScore W2904995992C33024259 @default.
- W2904995992 hasConceptScore W2904995992C38437897 @default.
- W2904995992 hasConceptScore W2904995992C41008148 @default.
- W2904995992 hasConceptScore W2904995992C44870925 @default.
- W2904995992 hasConceptScore W2904995992C68498078 @default.