Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904997753> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2904997753 abstract "Advanced driver assistance systems (ADAS) are standard features in many vehicles today and they have been proven to significantly increase the traffic safety. This paved way for development of autonomous driving (AD). To enable this, the vehicles are equipped with many sensors such as cameras and radars in order to scan the surrounding environment. The sensor outputs are used to implement decision and control modules. Verification of AD is a challenging task and requires collecting data from at least hundreds of millions of autonomously driven miles. We are therefore interested in virtual verification methods that simulate interesting and relevant situations, so that many scenarios can be tested in parallel. Realistic simulations require accurate sensor models, and in this paper we propose a probabilistic model based on the hidden Markov model (HMM) for modelling the sequential data produced by the sensors used in ADAS and AD. Moreover, we propose an efficient way to estimate parameters that scales well to big data sets. The results show that extending the HMM to use autoregression and input dependent transition probabilities is important in order to model the sensor characteristics and substantially improves the performance." @default.
- W2904997753 created "2018-12-22" @default.
- W2904997753 creator A5012682098 @default.
- W2904997753 creator A5057266594 @default.
- W2904997753 creator A5081426544 @default.
- W2904997753 date "2018-11-01" @default.
- W2904997753 modified "2023-10-16" @default.
- W2904997753 title "Statistical Sensor Modelling for Autonomous Driving Using Autoregressive Input-Output HMMs" @default.
- W2904997753 cites W2034306513 @default.
- W2904997753 cites W2049633694 @default.
- W2904997753 cites W2077514957 @default.
- W2904997753 cites W2111737705 @default.
- W2904997753 cites W2146971959 @default.
- W2904997753 cites W2154920538 @default.
- W2904997753 cites W2160091849 @default.
- W2904997753 cites W2523958427 @default.
- W2904997753 cites W2525936901 @default.
- W2904997753 cites W2565390496 @default.
- W2904997753 cites W2583716065 @default.
- W2904997753 cites W331183621 @default.
- W2904997753 cites W4205130185 @default.
- W2904997753 doi "https://doi.org/10.1109/itsc.2018.8569592" @default.
- W2904997753 hasPublicationYear "2018" @default.
- W2904997753 type Work @default.
- W2904997753 sameAs 2904997753 @default.
- W2904997753 citedByCount "7" @default.
- W2904997753 countsByYear W29049977532019 @default.
- W2904997753 countsByYear W29049977532020 @default.
- W2904997753 countsByYear W29049977532021 @default.
- W2904997753 countsByYear W29049977532022 @default.
- W2904997753 crossrefType "proceedings-article" @default.
- W2904997753 hasAuthorship W2904997753A5012682098 @default.
- W2904997753 hasAuthorship W2904997753A5057266594 @default.
- W2904997753 hasAuthorship W2904997753A5081426544 @default.
- W2904997753 hasConcept C114289077 @default.
- W2904997753 hasConcept C119857082 @default.
- W2904997753 hasConcept C124101348 @default.
- W2904997753 hasConcept C127413603 @default.
- W2904997753 hasConcept C149782125 @default.
- W2904997753 hasConcept C154945302 @default.
- W2904997753 hasConcept C159877910 @default.
- W2904997753 hasConcept C162324750 @default.
- W2904997753 hasConcept C201995342 @default.
- W2904997753 hasConcept C23224414 @default.
- W2904997753 hasConcept C2780451532 @default.
- W2904997753 hasConcept C41008148 @default.
- W2904997753 hasConcept C49937458 @default.
- W2904997753 hasConcept C67186912 @default.
- W2904997753 hasConcept C77088390 @default.
- W2904997753 hasConcept C79403827 @default.
- W2904997753 hasConcept C87833898 @default.
- W2904997753 hasConceptScore W2904997753C114289077 @default.
- W2904997753 hasConceptScore W2904997753C119857082 @default.
- W2904997753 hasConceptScore W2904997753C124101348 @default.
- W2904997753 hasConceptScore W2904997753C127413603 @default.
- W2904997753 hasConceptScore W2904997753C149782125 @default.
- W2904997753 hasConceptScore W2904997753C154945302 @default.
- W2904997753 hasConceptScore W2904997753C159877910 @default.
- W2904997753 hasConceptScore W2904997753C162324750 @default.
- W2904997753 hasConceptScore W2904997753C201995342 @default.
- W2904997753 hasConceptScore W2904997753C23224414 @default.
- W2904997753 hasConceptScore W2904997753C2780451532 @default.
- W2904997753 hasConceptScore W2904997753C41008148 @default.
- W2904997753 hasConceptScore W2904997753C49937458 @default.
- W2904997753 hasConceptScore W2904997753C67186912 @default.
- W2904997753 hasConceptScore W2904997753C77088390 @default.
- W2904997753 hasConceptScore W2904997753C79403827 @default.
- W2904997753 hasConceptScore W2904997753C87833898 @default.
- W2904997753 hasLocation W29049977531 @default.
- W2904997753 hasOpenAccess W2904997753 @default.
- W2904997753 hasPrimaryLocation W29049977531 @default.
- W2904997753 hasRelatedWork W1554043063 @default.
- W2904997753 hasRelatedWork W2109581903 @default.
- W2904997753 hasRelatedWork W2110057660 @default.
- W2904997753 hasRelatedWork W2146730620 @default.
- W2904997753 hasRelatedWork W2156316306 @default.
- W2904997753 hasRelatedWork W2180771322 @default.
- W2904997753 hasRelatedWork W2770034420 @default.
- W2904997753 hasRelatedWork W2904997753 @default.
- W2904997753 hasRelatedWork W3210865512 @default.
- W2904997753 hasRelatedWork W4205717613 @default.
- W2904997753 isParatext "false" @default.
- W2904997753 isRetracted "false" @default.
- W2904997753 magId "2904997753" @default.
- W2904997753 workType "article" @default.