Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904998972> ?p ?o ?g. }
- W2904998972 endingPage "025011" @default.
- W2904998972 startingPage "025011" @default.
- W2904998972 abstract "Dose and range verification have become important tools to bring carbon ion therapy to a higher level of confidence in clinical applications. Positron emission tomography is among the most commonly used approaches for this purpose and relies on the creation of positron emitting nuclei in nuclear interactions of the primary ions with tissue. Predictions of these positron emitter distributions are usually obtained from time-consuming Monte Carlo simulations or measurements from previous treatment fractions, and their comparison to the current, measured image allows for treatment verification. Still, a direct comparison of planned and delivered dose would be highly desirable, since the dose is the quantity of interest in radiation therapy and its confirmation improves quality assurance in carbon ion therapy. In this work, we present a deconvolution approach to predict dose distributions from PET images in carbon ion therapy. Under the assumption that the one-dimensional PET distribution is described by a convolution of the depth dose distribution and a filter kernel, an evolutionary algorithm is introduced to perform the reverse step and predict the depth dose distribution from a measured PET distribution. Filter kernels are obtained from either a library or are created for any given situation on-the-fly, using predictions of the [Formula: see text]-decay and depth dose distributions, and the very same evolutionary algorithm. The applicability of this approach is demonstrated for monoenergetic and polyenergetic carbon ion irradiation of homogeneous and heterogeneous solid phantoms as well as a patient computed tomography image, using Monte Carlo simulated distributions and measured in-beam PET data. Carbon ion ranges are predicted within less than 0.5 mm and 1 mm deviation for simulated and measured distributions, respectively." @default.
- W2904998972 created "2018-12-22" @default.
- W2904998972 creator A5000377815 @default.
- W2904998972 creator A5012779189 @default.
- W2904998972 creator A5027747311 @default.
- W2904998972 creator A5032916705 @default.
- W2904998972 creator A5033042947 @default.
- W2904998972 creator A5038712572 @default.
- W2904998972 creator A5043197687 @default.
- W2904998972 creator A5059865469 @default.
- W2904998972 creator A5062654449 @default.
- W2904998972 creator A5064266739 @default.
- W2904998972 creator A5064965403 @default.
- W2904998972 creator A5067659779 @default.
- W2904998972 creator A5083741065 @default.
- W2904998972 date "2019-01-10" @default.
- W2904998972 modified "2023-10-08" @default.
- W2904998972 title "Dose reconstruction from PET images in carbon ion therapy: a deconvolution approach" @default.
- W2904998972 cites W1967121735 @default.
- W2904998972 cites W1973617788 @default.
- W2904998972 cites W1974162549 @default.
- W2904998972 cites W1984666539 @default.
- W2904998972 cites W1990092654 @default.
- W2904998972 cites W2007352833 @default.
- W2904998972 cites W2008164950 @default.
- W2904998972 cites W2020160353 @default.
- W2904998972 cites W2023921468 @default.
- W2904998972 cites W2035952663 @default.
- W2904998972 cites W2043603625 @default.
- W2904998972 cites W2045415729 @default.
- W2904998972 cites W2049410982 @default.
- W2904998972 cites W2049952000 @default.
- W2904998972 cites W2057326035 @default.
- W2904998972 cites W2063713461 @default.
- W2904998972 cites W2063715164 @default.
- W2904998972 cites W2067826946 @default.
- W2904998972 cites W2069361609 @default.
- W2904998972 cites W2072239099 @default.
- W2904998972 cites W2073333316 @default.
- W2904998972 cites W2076107349 @default.
- W2904998972 cites W2076225721 @default.
- W2904998972 cites W2077747692 @default.
- W2904998972 cites W2119936729 @default.
- W2904998972 cites W2128158076 @default.
- W2904998972 cites W2135269192 @default.
- W2904998972 cites W2144241398 @default.
- W2904998972 cites W2154744699 @default.
- W2904998972 cites W2168530812 @default.
- W2904998972 cites W2509332681 @default.
- W2904998972 cites W2519739605 @default.
- W2904998972 cites W2559854831 @default.
- W2904998972 cites W2562927373 @default.
- W2904998972 cites W2615704365 @default.
- W2904998972 cites W2790041266 @default.
- W2904998972 cites W820935328 @default.
- W2904998972 doi "https://doi.org/10.1088/1361-6560/aaf676" @default.
- W2904998972 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30524026" @default.
- W2904998972 hasPublicationYear "2019" @default.
- W2904998972 type Work @default.
- W2904998972 sameAs 2904998972 @default.
- W2904998972 citedByCount "20" @default.
- W2904998972 countsByYear W29049989722019 @default.
- W2904998972 countsByYear W29049989722020 @default.
- W2904998972 countsByYear W29049989722021 @default.
- W2904998972 countsByYear W29049989722023 @default.
- W2904998972 crossrefType "journal-article" @default.
- W2904998972 hasAuthorship W2904998972A5000377815 @default.
- W2904998972 hasAuthorship W2904998972A5012779189 @default.
- W2904998972 hasAuthorship W2904998972A5027747311 @default.
- W2904998972 hasAuthorship W2904998972A5032916705 @default.
- W2904998972 hasAuthorship W2904998972A5033042947 @default.
- W2904998972 hasAuthorship W2904998972A5038712572 @default.
- W2904998972 hasAuthorship W2904998972A5043197687 @default.
- W2904998972 hasAuthorship W2904998972A5059865469 @default.
- W2904998972 hasAuthorship W2904998972A5062654449 @default.
- W2904998972 hasAuthorship W2904998972A5064266739 @default.
- W2904998972 hasAuthorship W2904998972A5064965403 @default.
- W2904998972 hasAuthorship W2904998972A5067659779 @default.
- W2904998972 hasAuthorship W2904998972A5083741065 @default.
- W2904998972 hasConcept C104293457 @default.
- W2904998972 hasConcept C105795698 @default.
- W2904998972 hasConcept C11413529 @default.
- W2904998972 hasConcept C114614502 @default.
- W2904998972 hasConcept C120665830 @default.
- W2904998972 hasConcept C121332964 @default.
- W2904998972 hasConcept C126838900 @default.
- W2904998972 hasConcept C145148216 @default.
- W2904998972 hasConcept C174576160 @default.
- W2904998972 hasConcept C192562407 @default.
- W2904998972 hasConcept C19499675 @default.
- W2904998972 hasConcept C2775842073 @default.
- W2904998972 hasConcept C2910615947 @default.
- W2904998972 hasConcept C2989005 @default.
- W2904998972 hasConcept C30475298 @default.
- W2904998972 hasConcept C33923547 @default.
- W2904998972 hasConcept C41008148 @default.
- W2904998972 hasConcept C509974204 @default.
- W2904998972 hasConcept C62520636 @default.