Matches in SemOpenAlex for { <https://semopenalex.org/work/W2905017682> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2905017682 endingPage "182" @default.
- W2905017682 startingPage "174" @default.
- W2905017682 abstract "Abstract Numerous computer-aided diagnosis (CAD) systems have been recently presented in the history of medical imaging to assist radiologists about their patients. For full assistance of radiologists and better analysis of magnetic resonance imaging (MRI), multi-grade classification of brain tumor is an essential procedure. In this paper, we propose a novel convolutional neural network (CNN) based multi-grade brain tumor classification system. Firstly, tumor regions from an MR image are segmented using a deep learning technique. Secondly, extensive data augmentation is employed to effectively train the proposed system, avoiding the lack of data problem when dealing with MRI for multi-grade brain tumor classification. Finally, a pre-trained CNN model is fine-tuned using augmented data for brain tumor grade classification. The proposed system is experimentally evaluated on both augmented and original data and results show its convincing performance compared to existing methods." @default.
- W2905017682 created "2018-12-22" @default.
- W2905017682 creator A5018267985 @default.
- W2905017682 creator A5052654998 @default.
- W2905017682 creator A5058897625 @default.
- W2905017682 creator A5061675305 @default.
- W2905017682 creator A5075042717 @default.
- W2905017682 date "2019-01-01" @default.
- W2905017682 modified "2023-10-16" @default.
- W2905017682 title "Multi-grade brain tumor classification using deep CNN with extensive data augmentation" @default.
- W2905017682 cites W1835905048 @default.
- W2905017682 cites W1884191083 @default.
- W2905017682 cites W1991874563 @default.
- W2905017682 cites W2031604000 @default.
- W2905017682 cites W2115862526 @default.
- W2905017682 cites W2116531017 @default.
- W2905017682 cites W2124986457 @default.
- W2905017682 cites W2150654863 @default.
- W2905017682 cites W2160382843 @default.
- W2905017682 cites W2182098131 @default.
- W2905017682 cites W2200290088 @default.
- W2905017682 cites W2366536035 @default.
- W2905017682 cites W2403729827 @default.
- W2905017682 cites W2543050677 @default.
- W2905017682 cites W2566202426 @default.
- W2905017682 cites W2566613935 @default.
- W2905017682 cites W2585666748 @default.
- W2905017682 cites W2591607908 @default.
- W2905017682 cites W2769581371 @default.
- W2905017682 cites W2776890449 @default.
- W2905017682 cites W2779880100 @default.
- W2905017682 cites W2780222614 @default.
- W2905017682 cites W2789491284 @default.
- W2905017682 cites W2789621530 @default.
- W2905017682 cites W2790012920 @default.
- W2905017682 cites W2790757012 @default.
- W2905017682 cites W2791286326 @default.
- W2905017682 doi "https://doi.org/10.1016/j.jocs.2018.12.003" @default.
- W2905017682 hasPublicationYear "2019" @default.
- W2905017682 type Work @default.
- W2905017682 sameAs 2905017682 @default.
- W2905017682 citedByCount "448" @default.
- W2905017682 countsByYear W29050176822019 @default.
- W2905017682 countsByYear W29050176822020 @default.
- W2905017682 countsByYear W29050176822021 @default.
- W2905017682 countsByYear W29050176822022 @default.
- W2905017682 countsByYear W29050176822023 @default.
- W2905017682 crossrefType "journal-article" @default.
- W2905017682 hasAuthorship W2905017682A5018267985 @default.
- W2905017682 hasAuthorship W2905017682A5052654998 @default.
- W2905017682 hasAuthorship W2905017682A5058897625 @default.
- W2905017682 hasAuthorship W2905017682A5061675305 @default.
- W2905017682 hasAuthorship W2905017682A5075042717 @default.
- W2905017682 hasConcept C153180895 @default.
- W2905017682 hasConcept C154945302 @default.
- W2905017682 hasConcept C41008148 @default.
- W2905017682 hasConceptScore W2905017682C153180895 @default.
- W2905017682 hasConceptScore W2905017682C154945302 @default.
- W2905017682 hasConceptScore W2905017682C41008148 @default.
- W2905017682 hasLocation W29050176821 @default.
- W2905017682 hasOpenAccess W2905017682 @default.
- W2905017682 hasPrimaryLocation W29050176821 @default.
- W2905017682 hasRelatedWork W1978450727 @default.
- W2905017682 hasRelatedWork W2033914206 @default.
- W2905017682 hasRelatedWork W2146076056 @default.
- W2905017682 hasRelatedWork W2163831990 @default.
- W2905017682 hasRelatedWork W2378160586 @default.
- W2905017682 hasRelatedWork W2380927352 @default.
- W2905017682 hasRelatedWork W3003836766 @default.
- W2905017682 hasRelatedWork W3107474891 @default.
- W2905017682 hasRelatedWork W4244943737 @default.
- W2905017682 hasRelatedWork W2289108895 @default.
- W2905017682 hasVolume "30" @default.
- W2905017682 isParatext "false" @default.
- W2905017682 isRetracted "false" @default.
- W2905017682 magId "2905017682" @default.
- W2905017682 workType "article" @default.