Matches in SemOpenAlex for { <https://semopenalex.org/work/W2905225613> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W2905225613 abstract "Recent advancements in parallel computing, GPU technology and deep learning provide a new platform for complex image processing tasks such as person detection to flourish. Person detection is fundamental preliminary operation for several high level computer vision tasks. One industry that can significantly benefit from person detection is retail. In recent years, various studies attempt to find an optimal solution for person detection using neural networks and deep learning. This study conducts a comparison among the state of the art deep learning base object detector with the focus on person detection performance in indoor environments. Performance of various implementations of YOLO, SSD, RCNN, R-FCN and SqueezeDet have been assessed using our in-house proprietary dataset which consists of over 10 thousands indoor images captured form shopping malls, retails and stores. Experimental results indicate that, Tiny YOLO-416 and SSD (VGG-300) are the fastest and Faster-RCNN (Inception ResNet-v2) and R-FCN (ResNet-101) are the most accurate detectors investigated in this study. Further analysis shows that YOLO v3-416 delivers relatively accurate result in a reasonable amount of time, which makes it an ideal model for person detection in embedded platforms." @default.
- W2905225613 created "2018-12-22" @default.
- W2905225613 creator A5000187752 @default.
- W2905225613 creator A5013565466 @default.
- W2905225613 creator A5018283687 @default.
- W2905225613 creator A5042598106 @default.
- W2905225613 creator A5056723302 @default.
- W2905225613 date "2019-01-01" @default.
- W2905225613 modified "2023-10-16" @default.
- W2905225613 title "A Comparison of Embedded Deep Learning Methods for Person Detection" @default.
- W2905225613 cites W2000335122 @default.
- W2905225613 cites W2097117768 @default.
- W2905225613 cites W2183182206 @default.
- W2905225613 cites W2407521645 @default.
- W2905225613 cites W2517206827 @default.
- W2905225613 cites W2549274538 @default.
- W2905225613 cites W2557728737 @default.
- W2905225613 cites W2570343428 @default.
- W2905225613 cites W2608221962 @default.
- W2905225613 cites W2612445135 @default.
- W2905225613 cites W2613196462 @default.
- W2905225613 cites W2613718673 @default.
- W2905225613 cites W2623356950 @default.
- W2905225613 cites W2919115771 @default.
- W2905225613 cites W2963087201 @default.
- W2905225613 cites W3106250896 @default.
- W2905225613 cites W1802525062 @default.
- W2905225613 cites W1861414163 @default.
- W2905225613 doi "https://doi.org/10.5220/0007386300002108" @default.
- W2905225613 hasPublicationYear "2019" @default.
- W2905225613 type Work @default.
- W2905225613 sameAs 2905225613 @default.
- W2905225613 citedByCount "3" @default.
- W2905225613 countsByYear W29052256132019 @default.
- W2905225613 countsByYear W29052256132020 @default.
- W2905225613 crossrefType "proceedings-article" @default.
- W2905225613 hasAuthorship W2905225613A5000187752 @default.
- W2905225613 hasAuthorship W2905225613A5013565466 @default.
- W2905225613 hasAuthorship W2905225613A5018283687 @default.
- W2905225613 hasAuthorship W2905225613A5042598106 @default.
- W2905225613 hasAuthorship W2905225613A5056723302 @default.
- W2905225613 hasBestOaLocation W29052256132 @default.
- W2905225613 hasConcept C108583219 @default.
- W2905225613 hasConcept C119857082 @default.
- W2905225613 hasConcept C154945302 @default.
- W2905225613 hasConcept C41008148 @default.
- W2905225613 hasConceptScore W2905225613C108583219 @default.
- W2905225613 hasConceptScore W2905225613C119857082 @default.
- W2905225613 hasConceptScore W2905225613C154945302 @default.
- W2905225613 hasConceptScore W2905225613C41008148 @default.
- W2905225613 hasLocation W29052256131 @default.
- W2905225613 hasLocation W29052256132 @default.
- W2905225613 hasOpenAccess W2905225613 @default.
- W2905225613 hasPrimaryLocation W29052256131 @default.
- W2905225613 hasRelatedWork W2922457425 @default.
- W2905225613 hasRelatedWork W3014300295 @default.
- W2905225613 hasRelatedWork W3164822677 @default.
- W2905225613 hasRelatedWork W4223943233 @default.
- W2905225613 hasRelatedWork W4225161397 @default.
- W2905225613 hasRelatedWork W4250304930 @default.
- W2905225613 hasRelatedWork W4309045103 @default.
- W2905225613 hasRelatedWork W4312200629 @default.
- W2905225613 hasRelatedWork W4360585206 @default.
- W2905225613 hasRelatedWork W4364306694 @default.
- W2905225613 isParatext "false" @default.
- W2905225613 isRetracted "false" @default.
- W2905225613 magId "2905225613" @default.
- W2905225613 workType "article" @default.