Matches in SemOpenAlex for { <https://semopenalex.org/work/W2905360067> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2905360067 endingPage "175" @default.
- W2905360067 startingPage "163" @default.
- W2905360067 abstract "Liver cancer is one among the normal types of cancer. Detection and determination of liver tumor at early stage are vital. The vast majority of the cancer passings can be anticipated by early detection, determination, and compelling treatment. It is required to fragment the liver tumor from the medical images for tumor analysis. A robotized framework is proposed for segmentation and classification of liver tumor which is an effective and simple to utilize technique. The proposed framework comprises of PreAprocessing, segmentation, postAprocessing, and a last classification as benign and malignant. Amid the preAprocessing stage, the image is resized to 256 × 256. In the segmentation stage, level set strategy is connected for sectioning the suspicious area. In postAprocessing stage, the district of intrigue is acquired from the first image. At long last the Pseudo Zenerike minute and GLDM is utilized for highlight extraction from CT image. These components are given as contribution to the SVM for classification of tumor as benign or malignant. The SVM is prepared utilizing four images. The proposed framework can accomplish precision rate of 86.7%." @default.
- W2905360067 created "2018-12-22" @default.
- W2905360067 creator A5002788873 @default.
- W2905360067 creator A5069867390 @default.
- W2905360067 creator A5078928407 @default.
- W2905360067 date "2018-12-14" @default.
- W2905360067 modified "2023-10-12" @default.
- W2905360067 title "Analysis of Liver Cancer Using Data Mining SVM Algorithm in MATLAB" @default.
- W2905360067 cites W2056116449 @default.
- W2905360067 cites W2083673350 @default.
- W2905360067 cites W2097522246 @default.
- W2905360067 cites W2124611117 @default.
- W2905360067 cites W2147273498 @default.
- W2905360067 cites W2329603268 @default.
- W2905360067 cites W2104443197 @default.
- W2905360067 doi "https://doi.org/10.1007/978-981-13-1592-3_12" @default.
- W2905360067 hasPublicationYear "2018" @default.
- W2905360067 type Work @default.
- W2905360067 sameAs 2905360067 @default.
- W2905360067 citedByCount "8" @default.
- W2905360067 countsByYear W29053600672019 @default.
- W2905360067 countsByYear W29053600672020 @default.
- W2905360067 countsByYear W29053600672021 @default.
- W2905360067 countsByYear W29053600672022 @default.
- W2905360067 crossrefType "book-chapter" @default.
- W2905360067 hasAuthorship W2905360067A5002788873 @default.
- W2905360067 hasAuthorship W2905360067A5069867390 @default.
- W2905360067 hasAuthorship W2905360067A5078928407 @default.
- W2905360067 hasConcept C111919701 @default.
- W2905360067 hasConcept C115961682 @default.
- W2905360067 hasConcept C121608353 @default.
- W2905360067 hasConcept C12267149 @default.
- W2905360067 hasConcept C124504099 @default.
- W2905360067 hasConcept C126322002 @default.
- W2905360067 hasConcept C146357865 @default.
- W2905360067 hasConcept C151730666 @default.
- W2905360067 hasConcept C153180895 @default.
- W2905360067 hasConcept C154945302 @default.
- W2905360067 hasConcept C177264268 @default.
- W2905360067 hasConcept C199360897 @default.
- W2905360067 hasConcept C2776231280 @default.
- W2905360067 hasConcept C2780365114 @default.
- W2905360067 hasConcept C41008148 @default.
- W2905360067 hasConcept C71924100 @default.
- W2905360067 hasConcept C86803240 @default.
- W2905360067 hasConcept C89600930 @default.
- W2905360067 hasConceptScore W2905360067C111919701 @default.
- W2905360067 hasConceptScore W2905360067C115961682 @default.
- W2905360067 hasConceptScore W2905360067C121608353 @default.
- W2905360067 hasConceptScore W2905360067C12267149 @default.
- W2905360067 hasConceptScore W2905360067C124504099 @default.
- W2905360067 hasConceptScore W2905360067C126322002 @default.
- W2905360067 hasConceptScore W2905360067C146357865 @default.
- W2905360067 hasConceptScore W2905360067C151730666 @default.
- W2905360067 hasConceptScore W2905360067C153180895 @default.
- W2905360067 hasConceptScore W2905360067C154945302 @default.
- W2905360067 hasConceptScore W2905360067C177264268 @default.
- W2905360067 hasConceptScore W2905360067C199360897 @default.
- W2905360067 hasConceptScore W2905360067C2776231280 @default.
- W2905360067 hasConceptScore W2905360067C2780365114 @default.
- W2905360067 hasConceptScore W2905360067C41008148 @default.
- W2905360067 hasConceptScore W2905360067C71924100 @default.
- W2905360067 hasConceptScore W2905360067C86803240 @default.
- W2905360067 hasConceptScore W2905360067C89600930 @default.
- W2905360067 hasLocation W29053600671 @default.
- W2905360067 hasOpenAccess W2905360067 @default.
- W2905360067 hasPrimaryLocation W29053600671 @default.
- W2905360067 hasRelatedWork W2041399278 @default.
- W2905360067 hasRelatedWork W2056016498 @default.
- W2905360067 hasRelatedWork W2136184105 @default.
- W2905360067 hasRelatedWork W2160451891 @default.
- W2905360067 hasRelatedWork W2336974148 @default.
- W2905360067 hasRelatedWork W2389470892 @default.
- W2905360067 hasRelatedWork W3013515612 @default.
- W2905360067 hasRelatedWork W2187500075 @default.
- W2905360067 hasRelatedWork W2345184372 @default.
- W2905360067 hasRelatedWork W2736898786 @default.
- W2905360067 isParatext "false" @default.
- W2905360067 isRetracted "false" @default.
- W2905360067 magId "2905360067" @default.
- W2905360067 workType "book-chapter" @default.