Matches in SemOpenAlex for { <https://semopenalex.org/work/W2905361888> ?p ?o ?g. }
- W2905361888 endingPage "149" @default.
- W2905361888 startingPage "125" @default.
- W2905361888 abstract "The exact three-dimensional (3D) shell model proposed in the present paper is able to perform the thermal stress analysis of simply-supported Functionally Graded Material (FGM) spherical and cylindrical shells, cylinders and plates. The model is based on the 3D equilibrium equations for spherical shells developed using an orthogonal mixed curvilinear coordinate system. The use of this reference system allows the investigation of cylindrical shells, cylinders and plates as particular cases of spherical shells by means of simple considerations on the radii of curvature. The 3D shell model uses a layer-wise approach and the exponential matrix method to calculate the general and the particular solutions through the thickness direction z. The system of second order differential equations in z is not homogeneous because of the thermal terms which are externally defined. The system is reduced to a group of first order differential equations in z simply redoubling the number of variables. The solution is in closed form in the in-plane directions α and β because of the hypotheses of simply-supported boundary conditions, harmonic forms for displacement and temperature fields, and isotropic behavior in the in-plane directions for functionally graded materials. In order to define the equivalent thermal load, the temperature profile through the thickness is separately defined by means of three possible ways. Using the hypothesis of temperature amplitudes imposed at the top and bottom external surfaces in steady-state conditions, the temperature profile can be: imposed as linear through the entire thickness direction, calculated by solving the 1D version of the Fourier heat conduction equation, or calculated by solving the 3D version of the Fourier heat conduction equation. The effects of different temperature profiles on the displacement and stress analyses of FGM plates and shells are here remarked. The first order differential equation system in z has not constant coefficients because of the presence of radii of curvature for shells and through-the-thickness variable elastic and thermal coefficients for the FGM layers. An appropriate number of mathematical layers is introduced to calculate the curvature influence for shells and the elastic and thermal material coefficients for FGM layers. Therefore, the system can be considered as differential equations with constant coefficients. The proposed results allow the evaluation of thickness ratio, geometry, lamination scheme, thickness material law and temperature profile effects in the related thermal stress analysis of single-layered and sandwich FGM plates, cylinders, spherical and cylindrical shells." @default.
- W2905361888 created "2018-12-22" @default.
- W2905361888 creator A5018518730 @default.
- W2905361888 creator A5086543984 @default.
- W2905361888 date "2019-02-01" @default.
- W2905361888 modified "2023-10-11" @default.
- W2905361888 title "3D shell model for the thermo-mechanical analysis of FGM structures via imposed and calculated temperature profiles" @default.
- W2905361888 cites W1794873020 @default.
- W2905361888 cites W1965573436 @default.
- W2905361888 cites W1969320058 @default.
- W2905361888 cites W1972071602 @default.
- W2905361888 cites W1975197402 @default.
- W2905361888 cites W1975480422 @default.
- W2905361888 cites W1975638739 @default.
- W2905361888 cites W1978644529 @default.
- W2905361888 cites W1981075117 @default.
- W2905361888 cites W1983971064 @default.
- W2905361888 cites W1984481142 @default.
- W2905361888 cites W1987212990 @default.
- W2905361888 cites W1988040998 @default.
- W2905361888 cites W1991233190 @default.
- W2905361888 cites W1991362595 @default.
- W2905361888 cites W1995658846 @default.
- W2905361888 cites W1999848088 @default.
- W2905361888 cites W2000058861 @default.
- W2905361888 cites W2001872051 @default.
- W2905361888 cites W2001979861 @default.
- W2905361888 cites W2002746264 @default.
- W2905361888 cites W2007404034 @default.
- W2905361888 cites W2011022901 @default.
- W2905361888 cites W2012253443 @default.
- W2905361888 cites W2014810365 @default.
- W2905361888 cites W2015404917 @default.
- W2905361888 cites W2019993812 @default.
- W2905361888 cites W2023268130 @default.
- W2905361888 cites W2026934954 @default.
- W2905361888 cites W2028211587 @default.
- W2905361888 cites W2029935494 @default.
- W2905361888 cites W2032140520 @default.
- W2905361888 cites W2033371114 @default.
- W2905361888 cites W2042079558 @default.
- W2905361888 cites W2044422359 @default.
- W2905361888 cites W2044657227 @default.
- W2905361888 cites W2050259321 @default.
- W2905361888 cites W2051861511 @default.
- W2905361888 cites W2052388014 @default.
- W2905361888 cites W2056862300 @default.
- W2905361888 cites W2058891203 @default.
- W2905361888 cites W2065295806 @default.
- W2905361888 cites W2065612572 @default.
- W2905361888 cites W2068722870 @default.
- W2905361888 cites W2070602218 @default.
- W2905361888 cites W2072221097 @default.
- W2905361888 cites W2072864936 @default.
- W2905361888 cites W2073592751 @default.
- W2905361888 cites W2076178677 @default.
- W2905361888 cites W2077989558 @default.
- W2905361888 cites W2078739519 @default.
- W2905361888 cites W2086956384 @default.
- W2905361888 cites W2090746735 @default.
- W2905361888 cites W2093125701 @default.
- W2905361888 cites W2093296086 @default.
- W2905361888 cites W2094896271 @default.
- W2905361888 cites W2095289431 @default.
- W2905361888 cites W2099525643 @default.
- W2905361888 cites W2109009327 @default.
- W2905361888 cites W2109838978 @default.
- W2905361888 cites W2112850728 @default.
- W2905361888 cites W2126441319 @default.
- W2905361888 cites W2127210993 @default.
- W2905361888 cites W2135216912 @default.
- W2905361888 cites W2163328853 @default.
- W2905361888 cites W2168379317 @default.
- W2905361888 cites W2168912269 @default.
- W2905361888 cites W2337054200 @default.
- W2905361888 cites W2338180878 @default.
- W2905361888 cites W2396532201 @default.
- W2905361888 cites W2403105985 @default.
- W2905361888 cites W2408261287 @default.
- W2905361888 cites W2525129960 @default.
- W2905361888 cites W2536066732 @default.
- W2905361888 cites W2596158013 @default.
- W2905361888 cites W2604412831 @default.
- W2905361888 cites W2605597818 @default.
- W2905361888 cites W2614402196 @default.
- W2905361888 cites W2618091613 @default.
- W2905361888 cites W2742436705 @default.
- W2905361888 cites W2773395811 @default.
- W2905361888 cites W2776581182 @default.
- W2905361888 cites W2786462005 @default.
- W2905361888 cites W2796041230 @default.
- W2905361888 cites W2796189366 @default.
- W2905361888 cites W2888334479 @default.
- W2905361888 doi "https://doi.org/10.1016/j.ast.2018.12.011" @default.
- W2905361888 hasPublicationYear "2019" @default.
- W2905361888 type Work @default.
- W2905361888 sameAs 2905361888 @default.
- W2905361888 citedByCount "12" @default.