Matches in SemOpenAlex for { <https://semopenalex.org/work/W2905409889> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2905409889 abstract "Ahstract-Structure-borne sound is an interesting sensory modality for inferring contact information in robotics due to comparatively cheap sensor hardware, the possibility to integrate it into existing systems with little effort, and due to the richness of information in the acquired signals. In this work we investigate whether it is feasible to fit piezoelectric acoustic sensors on a robotic system in order to infer properties of objects during contact events. In contrast to existing works regarding object and material identification by evaluating sound the challenge in our experimental setup is that the sensor is integrated in the structure of the robot. Hence, the measured audio signal are not only governed by the acoustic properties of the objects, but are also strongly influenced by the changing resonance properties of the robot due to its kinematic configuration and the ego-noise during operation. We investigate whether it is possible to learn a classifier that is invariant and robust to these configuration dependent changes in the acquired audio signals. We demonstrate the feasibility of this approach in two selected material classification experiments and compare the performance of a deep learning classifier to several baseline machine learning methods. We found out that a representation learning approach using a deep neural network shows the highest invariance to the changing acoustics properties and outperforms the baseline methods in our experiments. The results encourage the further investigation of structure-borne sound in robotic applications." @default.
- W2905409889 created "2018-12-22" @default.
- W2905409889 creator A5003417614 @default.
- W2905409889 creator A5028796159 @default.
- W2905409889 creator A5037735507 @default.
- W2905409889 creator A5065110262 @default.
- W2905409889 date "2018-08-01" @default.
- W2905409889 modified "2023-10-01" @default.
- W2905409889 title "Material Classification through Knocking and Grasping by Learning of Structure-Borne Sound under Changing Acoustic Conditions" @default.
- W2905409889 cites W1495444396 @default.
- W2905409889 cites W2045831595 @default.
- W2905409889 cites W2067454831 @default.
- W2905409889 cites W2131133231 @default.
- W2905409889 cites W2148644821 @default.
- W2905409889 cites W2150540137 @default.
- W2905409889 cites W2152548630 @default.
- W2905409889 cites W2171130677 @default.
- W2905409889 cites W2184638288 @default.
- W2905409889 cites W2209829030 @default.
- W2905409889 cites W2221079895 @default.
- W2905409889 cites W2567050476 @default.
- W2905409889 cites W2739187565 @default.
- W2905409889 cites W4254410496 @default.
- W2905409889 doi "https://doi.org/10.1109/coase.2018.8560527" @default.
- W2905409889 hasPublicationYear "2018" @default.
- W2905409889 type Work @default.
- W2905409889 sameAs 2905409889 @default.
- W2905409889 citedByCount "5" @default.
- W2905409889 countsByYear W29054098892019 @default.
- W2905409889 countsByYear W29054098892020 @default.
- W2905409889 countsByYear W29054098892021 @default.
- W2905409889 countsByYear W29054098892022 @default.
- W2905409889 countsByYear W29054098892023 @default.
- W2905409889 crossrefType "proceedings-article" @default.
- W2905409889 hasAuthorship W2905409889A5003417614 @default.
- W2905409889 hasAuthorship W2905409889A5028796159 @default.
- W2905409889 hasAuthorship W2905409889A5037735507 @default.
- W2905409889 hasAuthorship W2905409889A5065110262 @default.
- W2905409889 hasConcept C119857082 @default.
- W2905409889 hasConcept C121332964 @default.
- W2905409889 hasConcept C154945302 @default.
- W2905409889 hasConcept C24890656 @default.
- W2905409889 hasConcept C31972630 @default.
- W2905409889 hasConcept C34413123 @default.
- W2905409889 hasConcept C39920418 @default.
- W2905409889 hasConcept C41008148 @default.
- W2905409889 hasConcept C46722567 @default.
- W2905409889 hasConcept C50644808 @default.
- W2905409889 hasConcept C74650414 @default.
- W2905409889 hasConcept C90509273 @default.
- W2905409889 hasConcept C95623464 @default.
- W2905409889 hasConceptScore W2905409889C119857082 @default.
- W2905409889 hasConceptScore W2905409889C121332964 @default.
- W2905409889 hasConceptScore W2905409889C154945302 @default.
- W2905409889 hasConceptScore W2905409889C24890656 @default.
- W2905409889 hasConceptScore W2905409889C31972630 @default.
- W2905409889 hasConceptScore W2905409889C34413123 @default.
- W2905409889 hasConceptScore W2905409889C39920418 @default.
- W2905409889 hasConceptScore W2905409889C41008148 @default.
- W2905409889 hasConceptScore W2905409889C46722567 @default.
- W2905409889 hasConceptScore W2905409889C50644808 @default.
- W2905409889 hasConceptScore W2905409889C74650414 @default.
- W2905409889 hasConceptScore W2905409889C90509273 @default.
- W2905409889 hasConceptScore W2905409889C95623464 @default.
- W2905409889 hasLocation W29054098891 @default.
- W2905409889 hasOpenAccess W2905409889 @default.
- W2905409889 hasPrimaryLocation W29054098891 @default.
- W2905409889 hasRelatedWork W1551237084 @default.
- W2905409889 hasRelatedWork W2061090284 @default.
- W2905409889 hasRelatedWork W2099430739 @default.
- W2905409889 hasRelatedWork W2115847113 @default.
- W2905409889 hasRelatedWork W2131341196 @default.
- W2905409889 hasRelatedWork W2168146018 @default.
- W2905409889 hasRelatedWork W2182798423 @default.
- W2905409889 hasRelatedWork W2961085424 @default.
- W2905409889 hasRelatedWork W2970737581 @default.
- W2905409889 hasRelatedWork W4206748793 @default.
- W2905409889 isParatext "false" @default.
- W2905409889 isRetracted "false" @default.
- W2905409889 magId "2905409889" @default.
- W2905409889 workType "article" @default.