Matches in SemOpenAlex for { <https://semopenalex.org/work/W2905453724> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2905453724 abstract "In this paper, we use a well-known Deep Learning technique called Long Short Term Memory (LSTM) recurrent neural networks to find sessions that are prone to code failure in applications that rely on telemetry data for system health monitoring. We also use LSTM networks to extract telemetry patterns that lead to a specific code failure. For code failure prediction, we treat the telemetry events, sequence of telemetry events and the outcome of each sequence as words, sentence and sentiment in the context of sentiment analysis, respectively. Our proposed method is able to process a large set of data and can automatically handle edge cases in code failure prediction. We take advantage of Bayesian optimization technique to find the optimal hyper parameters as well as the type of LSTM cells that leads to the best prediction performance. We then introduce the Contributors and Blockers concepts. In this paper, contributors are the set of events that cause a code failure, while blockers are the set of events that each of them individually prevents a code failure from happening, even in presence of one or multiple contributor(s). Once the proposed LSTM model is trained, we use a greedy approach to find the contributors and blockers. To develop and test our proposed method, we use synthetic (simulated) data in the first step. The synthetic data is generated using a number of rules for code failures, as well as a number of rules for preventing a code failure from happening. The trained LSTM model shows over 99% accuracy for detecting code failures in the synthetic data. The results from the proposed method outperform the classical learning models such as Decision Tree and Random Forest. Using the proposed greedy method, we are able to find the contributors and blockers in the synthetic data in more than 90% of the cases, with a performance better than sequential rule and pattern mining algorithms." @default.
- W2905453724 created "2018-12-22" @default.
- W2905453724 creator A5003889808 @default.
- W2905453724 creator A5078846277 @default.
- W2905453724 date "2018-12-13" @default.
- W2905453724 modified "2023-09-27" @default.
- W2905453724 title "Code Failure Prediction and Pattern Extraction using LSTM Networks" @default.
- W2905453724 cites W1503398984 @default.
- W2905453724 cites W1598796236 @default.
- W2905453724 cites W1601924930 @default.
- W2905453724 cites W1951216520 @default.
- W2905453724 cites W1990142825 @default.
- W2905453724 cites W2005708641 @default.
- W2905453724 cites W2112971308 @default.
- W2905453724 cites W2123488392 @default.
- W2905453724 cites W2440159969 @default.
- W2905453724 cites W2534222797 @default.
- W2905453724 cites W2562979205 @default.
- W2905453724 cites W2585367509 @default.
- W2905453724 cites W2657631929 @default.
- W2905453724 cites W28988658 @default.
- W2905453724 cites W2902455138 @default.
- W2905453724 cites W2963468488 @default.
- W2905453724 hasPublicationYear "2018" @default.
- W2905453724 type Work @default.
- W2905453724 sameAs 2905453724 @default.
- W2905453724 citedByCount "0" @default.
- W2905453724 crossrefType "posted-content" @default.
- W2905453724 hasAuthorship W2905453724A5003889808 @default.
- W2905453724 hasAuthorship W2905453724A5078846277 @default.
- W2905453724 hasConcept C119857082 @default.
- W2905453724 hasConcept C124101348 @default.
- W2905453724 hasConcept C147168706 @default.
- W2905453724 hasConcept C151730666 @default.
- W2905453724 hasConcept C154945302 @default.
- W2905453724 hasConcept C169903167 @default.
- W2905453724 hasConcept C177264268 @default.
- W2905453724 hasConcept C183121708 @default.
- W2905453724 hasConcept C199360897 @default.
- W2905453724 hasConcept C2776760102 @default.
- W2905453724 hasConcept C2777530160 @default.
- W2905453724 hasConcept C2779343474 @default.
- W2905453724 hasConcept C41008148 @default.
- W2905453724 hasConcept C50644808 @default.
- W2905453724 hasConcept C58489278 @default.
- W2905453724 hasConcept C76155785 @default.
- W2905453724 hasConcept C86803240 @default.
- W2905453724 hasConceptScore W2905453724C119857082 @default.
- W2905453724 hasConceptScore W2905453724C124101348 @default.
- W2905453724 hasConceptScore W2905453724C147168706 @default.
- W2905453724 hasConceptScore W2905453724C151730666 @default.
- W2905453724 hasConceptScore W2905453724C154945302 @default.
- W2905453724 hasConceptScore W2905453724C169903167 @default.
- W2905453724 hasConceptScore W2905453724C177264268 @default.
- W2905453724 hasConceptScore W2905453724C183121708 @default.
- W2905453724 hasConceptScore W2905453724C199360897 @default.
- W2905453724 hasConceptScore W2905453724C2776760102 @default.
- W2905453724 hasConceptScore W2905453724C2777530160 @default.
- W2905453724 hasConceptScore W2905453724C2779343474 @default.
- W2905453724 hasConceptScore W2905453724C41008148 @default.
- W2905453724 hasConceptScore W2905453724C50644808 @default.
- W2905453724 hasConceptScore W2905453724C58489278 @default.
- W2905453724 hasConceptScore W2905453724C76155785 @default.
- W2905453724 hasConceptScore W2905453724C86803240 @default.
- W2905453724 hasLocation W29054537241 @default.
- W2905453724 hasOpenAccess W2905453724 @default.
- W2905453724 hasPrimaryLocation W29054537241 @default.
- W2905453724 hasRelatedWork W1907114107 @default.
- W2905453724 hasRelatedWork W2726805443 @default.
- W2905453724 hasRelatedWork W2803823445 @default.
- W2905453724 hasRelatedWork W2896224010 @default.
- W2905453724 hasRelatedWork W2901229113 @default.
- W2905453724 hasRelatedWork W2907487329 @default.
- W2905453724 hasRelatedWork W2909037216 @default.
- W2905453724 hasRelatedWork W2914103415 @default.
- W2905453724 hasRelatedWork W2949645065 @default.
- W2905453724 hasRelatedWork W2973725863 @default.
- W2905453724 hasRelatedWork W3014146531 @default.
- W2905453724 hasRelatedWork W3080268723 @default.
- W2905453724 hasRelatedWork W3097264851 @default.
- W2905453724 hasRelatedWork W3132772989 @default.
- W2905453724 hasRelatedWork W3134795618 @default.
- W2905453724 hasRelatedWork W3135495209 @default.
- W2905453724 hasRelatedWork W3162861012 @default.
- W2905453724 hasRelatedWork W3198841974 @default.
- W2905453724 hasRelatedWork W3213202774 @default.
- W2905453724 hasRelatedWork W3110844095 @default.
- W2905453724 isParatext "false" @default.
- W2905453724 isRetracted "false" @default.
- W2905453724 magId "2905453724" @default.
- W2905453724 workType "article" @default.