Matches in SemOpenAlex for { <https://semopenalex.org/work/W2905545847> ?p ?o ?g. }
- W2905545847 abstract "High-order correlation has recently been proposed to model brain functional connectivity network (FCN) for identifying neurological disorders, such as mild cognitive impairment (MCI) and autism spectrum disorder (ASD). In practice, the high-order FCN (HoFCN) can be derived from multiple low-order FCNs that are estimated separately in a series of sliding windows, and thus it in fact provides a way of integrating dynamic information encoded in a sequence of low-order FCNs. However, the estimation of low-order FCN may be unreliable due to the fact that the use of limited volumes/samples in a sliding window can significantly reduce the statistical power, which in turn affects the reliability of the resulted HoFCN. To address this issue, we propose to enhance HoFCN based on a regularized learning framework. More specifically, we first calculate an initial HoFCN using a recently developed method based on maximum likelihood estimation. Then, we learn an optimal neighborhood network of the initially estimated HoFCN with sparsity and modularity priors as regularizers. Finally, based on the improved HoFCNs, we conduct experiments to identify MCI and ASD patients from their corresponding normal controls. Experimental results show that the proposed methods outperform the baseline methods, and the improved HoFCNs with modularity prior consistently achieve the best performance." @default.
- W2905545847 created "2018-12-22" @default.
- W2905545847 creator A5000937401 @default.
- W2905545847 creator A5006333473 @default.
- W2905545847 creator A5060413120 @default.
- W2905545847 creator A5089137375 @default.
- W2905545847 creator A5091426353 @default.
- W2905545847 date "2018-12-18" @default.
- W2905545847 modified "2023-10-13" @default.
- W2905545847 title "Improving Sparsity and Modularity of High-Order Functional Connectivity Networks for MCI and ASD Identification" @default.
- W2905545847 cites W172260869 @default.
- W2905545847 cites W1901624583 @default.
- W2905545847 cites W1954383814 @default.
- W2905545847 cites W1969700144 @default.
- W2905545847 cites W1973776237 @default.
- W2905545847 cites W1983493842 @default.
- W2905545847 cites W1990134753 @default.
- W2905545847 cites W1992272716 @default.
- W2905545847 cites W1996630013 @default.
- W2905545847 cites W1997201895 @default.
- W2905545847 cites W1998635907 @default.
- W2905545847 cites W1999653836 @default.
- W2905545847 cites W2000619876 @default.
- W2905545847 cites W2001735625 @default.
- W2905545847 cites W2003851329 @default.
- W2905545847 cites W2005238835 @default.
- W2905545847 cites W2007369824 @default.
- W2905545847 cites W2009494091 @default.
- W2905545847 cites W2011131455 @default.
- W2905545847 cites W2011541551 @default.
- W2905545847 cites W2014022174 @default.
- W2905545847 cites W2016158653 @default.
- W2905545847 cites W2017303933 @default.
- W2905545847 cites W2033881971 @default.
- W2905545847 cites W2035054293 @default.
- W2905545847 cites W2039728861 @default.
- W2905545847 cites W2051623424 @default.
- W2905545847 cites W2058046532 @default.
- W2905545847 cites W2061665608 @default.
- W2905545847 cites W2070892134 @default.
- W2905545847 cites W2075105655 @default.
- W2905545847 cites W2095438393 @default.
- W2905545847 cites W2095491050 @default.
- W2905545847 cites W2110355775 @default.
- W2905545847 cites W2115017507 @default.
- W2905545847 cites W2120349574 @default.
- W2905545847 cites W2122457251 @default.
- W2905545847 cites W2124698428 @default.
- W2905545847 cites W2128155135 @default.
- W2905545847 cites W2129786558 @default.
- W2905545847 cites W2130278867 @default.
- W2905545847 cites W2130654277 @default.
- W2905545847 cites W2132175842 @default.
- W2905545847 cites W2132555912 @default.
- W2905545847 cites W2134858198 @default.
- W2905545847 cites W2136148445 @default.
- W2905545847 cites W2138905229 @default.
- W2905545847 cites W2138991775 @default.
- W2905545847 cites W2143502460 @default.
- W2905545847 cites W2148080251 @default.
- W2905545847 cites W2153635508 @default.
- W2905545847 cites W2165881238 @default.
- W2905545847 cites W2168094269 @default.
- W2905545847 cites W2180423080 @default.
- W2905545847 cites W2185297548 @default.
- W2905545847 cites W2288326636 @default.
- W2905545847 cites W2345678177 @default.
- W2905545847 cites W2502203196 @default.
- W2905545847 cites W2518298328 @default.
- W2905545847 cites W2537184637 @default.
- W2905545847 cites W2570603060 @default.
- W2905545847 cites W2582524520 @default.
- W2905545847 cites W2583114732 @default.
- W2905545847 cites W2618983688 @default.
- W2905545847 cites W2737156152 @default.
- W2905545847 cites W2746450741 @default.
- W2905545847 cites W2753113451 @default.
- W2905545847 cites W2768213554 @default.
- W2905545847 cites W2791182716 @default.
- W2905545847 cites W2803679388 @default.
- W2905545847 cites W4229611071 @default.
- W2905545847 doi "https://doi.org/10.3389/fnins.2018.00959" @default.
- W2905545847 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6305547" @default.
- W2905545847 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30618582" @default.
- W2905545847 hasPublicationYear "2018" @default.
- W2905545847 type Work @default.
- W2905545847 sameAs 2905545847 @default.
- W2905545847 citedByCount "20" @default.
- W2905545847 countsByYear W29055458472020 @default.
- W2905545847 countsByYear W29055458472021 @default.
- W2905545847 countsByYear W29055458472022 @default.
- W2905545847 countsByYear W29055458472023 @default.
- W2905545847 crossrefType "journal-article" @default.
- W2905545847 hasAuthorship W2905545847A5000937401 @default.
- W2905545847 hasAuthorship W2905545847A5006333473 @default.
- W2905545847 hasAuthorship W2905545847A5060413120 @default.
- W2905545847 hasAuthorship W2905545847A5089137375 @default.
- W2905545847 hasAuthorship W2905545847A5091426353 @default.
- W2905545847 hasBestOaLocation W29055458471 @default.
- W2905545847 hasConcept C102392041 @default.