Matches in SemOpenAlex for { <https://semopenalex.org/work/W2905588001> ?p ?o ?g. }
- W2905588001 endingPage "28" @default.
- W2905588001 startingPage "17" @default.
- W2905588001 abstract "Machine learning has become an essential tool for gleaning knowledge from data and tackling a diverse set of computationally hard tasks. However, the accuracy of a machine learned model is deeply tied to the data that it is trained on. Designing and building robust processes and tools that make it easier to analyze, validate, and transform data that is fed into large-scale machine learning systems poses data management challenges. Drawn from our experience in developing data-centric infrastructure for a production machine learning platform at Google, we summarize some of the interesting research challenges that we encountered, and survey some of the relevant literature from the data management and machine learning communities. Specifically, we explore challenges in three main areas of focus - data understanding, data validation and cleaning, and data preparation. In each of these areas, we try to explore how different constraints are imposed on the solutions depending on where in the lifecycle of a model the problems are encountered and who encounters them." @default.
- W2905588001 created "2018-12-22" @default.
- W2905588001 creator A5010950113 @default.
- W2905588001 creator A5012631773 @default.
- W2905588001 creator A5065950643 @default.
- W2905588001 creator A5074900890 @default.
- W2905588001 date "2018-12-11" @default.
- W2905588001 modified "2023-10-01" @default.
- W2905588001 title "Data Lifecycle Challenges in Production Machine Learning" @default.
- W2905588001 cites W1976732638 @default.
- W2905588001 cites W1997952460 @default.
- W2905588001 cites W2000809552 @default.
- W2905588001 cites W2032916024 @default.
- W2905588001 cites W2041442195 @default.
- W2905588001 cites W2044469685 @default.
- W2905588001 cites W2047745978 @default.
- W2905588001 cites W2071989194 @default.
- W2905588001 cites W2074935284 @default.
- W2905588001 cites W2078639378 @default.
- W2905588001 cites W2096689597 @default.
- W2905588001 cites W2098759488 @default.
- W2905588001 cites W2099416425 @default.
- W2905588001 cites W2108223890 @default.
- W2905588001 cites W2125943921 @default.
- W2905588001 cites W2142472956 @default.
- W2905588001 cites W2148579753 @default.
- W2905588001 cites W2157814900 @default.
- W2905588001 cites W2163922914 @default.
- W2905588001 cites W2166454173 @default.
- W2905588001 cites W2167333415 @default.
- W2905588001 cites W2257756289 @default.
- W2905588001 cites W2357449897 @default.
- W2905588001 cites W2423993090 @default.
- W2905588001 cites W2438792749 @default.
- W2905588001 cites W2440722286 @default.
- W2905588001 cites W2444650685 @default.
- W2905588001 cites W2469798230 @default.
- W2905588001 cites W2547190417 @default.
- W2905588001 cites W2547386789 @default.
- W2905588001 cites W2548122763 @default.
- W2905588001 cites W2560713231 @default.
- W2905588001 cites W2610871042 @default.
- W2905588001 cites W2613536717 @default.
- W2905588001 cites W2613751718 @default.
- W2905588001 cites W2614986686 @default.
- W2905588001 cites W2743948853 @default.
- W2905588001 cites W2753069234 @default.
- W2905588001 cites W2769041395 @default.
- W2905588001 cites W2963707382 @default.
- W2905588001 cites W2998715488 @default.
- W2905588001 cites W3045153201 @default.
- W2905588001 cites W335227069 @default.
- W2905588001 cites W4232627933 @default.
- W2905588001 doi "https://doi.org/10.1145/3299887.3299891" @default.
- W2905588001 hasPublicationYear "2018" @default.
- W2905588001 type Work @default.
- W2905588001 sameAs 2905588001 @default.
- W2905588001 citedByCount "121" @default.
- W2905588001 countsByYear W29055880012018 @default.
- W2905588001 countsByYear W29055880012019 @default.
- W2905588001 countsByYear W29055880012020 @default.
- W2905588001 countsByYear W29055880012021 @default.
- W2905588001 countsByYear W29055880012022 @default.
- W2905588001 countsByYear W29055880012023 @default.
- W2905588001 crossrefType "journal-article" @default.
- W2905588001 hasAuthorship W2905588001A5010950113 @default.
- W2905588001 hasAuthorship W2905588001A5012631773 @default.
- W2905588001 hasAuthorship W2905588001A5065950643 @default.
- W2905588001 hasAuthorship W2905588001A5074900890 @default.
- W2905588001 hasConcept C115903868 @default.
- W2905588001 hasConcept C119857082 @default.
- W2905588001 hasConcept C120665830 @default.
- W2905588001 hasConcept C121332964 @default.
- W2905588001 hasConcept C139719470 @default.
- W2905588001 hasConcept C154945302 @default.
- W2905588001 hasConcept C162324750 @default.
- W2905588001 hasConcept C177264268 @default.
- W2905588001 hasConcept C192209626 @default.
- W2905588001 hasConcept C199360897 @default.
- W2905588001 hasConcept C2522767166 @default.
- W2905588001 hasConcept C2778348673 @default.
- W2905588001 hasConcept C2778755073 @default.
- W2905588001 hasConcept C41008148 @default.
- W2905588001 hasConcept C62520636 @default.
- W2905588001 hasConcept C67186912 @default.
- W2905588001 hasConceptScore W2905588001C115903868 @default.
- W2905588001 hasConceptScore W2905588001C119857082 @default.
- W2905588001 hasConceptScore W2905588001C120665830 @default.
- W2905588001 hasConceptScore W2905588001C121332964 @default.
- W2905588001 hasConceptScore W2905588001C139719470 @default.
- W2905588001 hasConceptScore W2905588001C154945302 @default.
- W2905588001 hasConceptScore W2905588001C162324750 @default.
- W2905588001 hasConceptScore W2905588001C177264268 @default.
- W2905588001 hasConceptScore W2905588001C192209626 @default.
- W2905588001 hasConceptScore W2905588001C199360897 @default.
- W2905588001 hasConceptScore W2905588001C2522767166 @default.
- W2905588001 hasConceptScore W2905588001C2778348673 @default.
- W2905588001 hasConceptScore W2905588001C2778755073 @default.