Matches in SemOpenAlex for { <https://semopenalex.org/work/W2905591383> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2905591383 endingPage "53" @default.
- W2905591383 startingPage "45" @default.
- W2905591383 abstract "Abstract Data for dynamic stable state in power system are very large. This leads to making difficult for a single classifier to learn boundaries of classes. This paper proposes a procedure to build Advanced Parallel Classifier Model (APCM) for dynamic stability diagnosis in power system with the aim of improving diagnosis accuracy. To build APCM, the Sequential Forward Floating Search is applied to select feature subset, and the Hybrid K-means is applied to choose data reduction and partition subsets. To find feature subset and sub-dataset, K-nearest neighbour classifier is employed to evaluate the classification accuracy. Then, the APCM is built by three kinds of classifiers as follow: the Multi-layer Perceptron Network, the Generalize Regression Neural Network, and the Support Vector Machines. The study is implemented on IEEE 39-bus power system network. The simulation results showed that the proposed the APCM can achieve classification accuracy higher than that of the single classifier." @default.
- W2905591383 created "2019-01-01" @default.
- W2905591383 creator A5033057128 @default.
- W2905591383 creator A5053293378 @default.
- W2905591383 creator A5077734320 @default.
- W2905591383 creator A5080752396 @default.
- W2905591383 date "2019-03-01" @default.
- W2905591383 modified "2023-09-25" @default.
- W2905591383 title "Advanced parallel classifier model for dynamic stability diagnosis in power system" @default.
- W2905591383 cites W1969227494 @default.
- W2905591383 cites W1981379040 @default.
- W2905591383 cites W2027685371 @default.
- W2905591383 cites W2041705870 @default.
- W2905591383 cites W2043233166 @default.
- W2905591383 cites W2083378155 @default.
- W2905591383 cites W2090314087 @default.
- W2905591383 cites W2102665317 @default.
- W2905591383 cites W2129138344 @default.
- W2905591383 cites W2137356002 @default.
- W2905591383 cites W2237654220 @default.
- W2905591383 cites W2279385368 @default.
- W2905591383 cites W2343010067 @default.
- W2905591383 cites W2418469734 @default.
- W2905591383 cites W2503135644 @default.
- W2905591383 cites W2547135429 @default.
- W2905591383 cites W2584997055 @default.
- W2905591383 cites W2023736703 @default.
- W2905591383 doi "https://doi.org/10.1016/j.asej.2018.02.006" @default.
- W2905591383 hasPublicationYear "2019" @default.
- W2905591383 type Work @default.
- W2905591383 sameAs 2905591383 @default.
- W2905591383 citedByCount "1" @default.
- W2905591383 countsByYear W29055913832021 @default.
- W2905591383 crossrefType "journal-article" @default.
- W2905591383 hasAuthorship W2905591383A5033057128 @default.
- W2905591383 hasAuthorship W2905591383A5053293378 @default.
- W2905591383 hasAuthorship W2905591383A5077734320 @default.
- W2905591383 hasAuthorship W2905591383A5080752396 @default.
- W2905591383 hasBestOaLocation W29055913831 @default.
- W2905591383 hasConcept C112972136 @default.
- W2905591383 hasConcept C119857082 @default.
- W2905591383 hasConcept C154945302 @default.
- W2905591383 hasConcept C41008148 @default.
- W2905591383 hasConcept C95623464 @default.
- W2905591383 hasConceptScore W2905591383C112972136 @default.
- W2905591383 hasConceptScore W2905591383C119857082 @default.
- W2905591383 hasConceptScore W2905591383C154945302 @default.
- W2905591383 hasConceptScore W2905591383C41008148 @default.
- W2905591383 hasConceptScore W2905591383C95623464 @default.
- W2905591383 hasIssue "1" @default.
- W2905591383 hasLocation W29055913831 @default.
- W2905591383 hasOpenAccess W2905591383 @default.
- W2905591383 hasPrimaryLocation W29055913831 @default.
- W2905591383 hasRelatedWork W1535472535 @default.
- W2905591383 hasRelatedWork W1541307921 @default.
- W2905591383 hasRelatedWork W2474469336 @default.
- W2905591383 hasRelatedWork W2549006548 @default.
- W2905591383 hasRelatedWork W2563096758 @default.
- W2905591383 hasRelatedWork W2742860341 @default.
- W2905591383 hasRelatedWork W2912397168 @default.
- W2905591383 hasRelatedWork W3017123539 @default.
- W2905591383 hasRelatedWork W3017503936 @default.
- W2905591383 hasRelatedWork W4225852842 @default.
- W2905591383 hasVolume "10" @default.
- W2905591383 isParatext "false" @default.
- W2905591383 isRetracted "false" @default.
- W2905591383 magId "2905591383" @default.
- W2905591383 workType "article" @default.