Matches in SemOpenAlex for { <https://semopenalex.org/work/W2905796730> ?p ?o ?g. }
- W2905796730 endingPage "801" @default.
- W2905796730 startingPage "786" @default.
- W2905796730 abstract "Exhaust Gas Recirculation (EGR) is a frequently used technique to reduce the production of NOx. The effect of EGR on the early flame evolution, two-stage ignition process and spray flame structures for n-heptane spray flames are investigated using large eddy simulation. The two-stage ignition process is identified based on the formation of key species and early heat release process. Results demonstrate that a longer ignition delay (ID) and flame lift-off length (LOL) under lower oxygen concentration conditions could increase the mixing time for fuel and air. However, the first-stage ignition still initiates in fuel-richer regions for the cases with higher EGR rates due to the lack of oxygen. In contrast, compared to the case with the same initial oxygen content but at a higher gas temperature of 1000 K, the first-stage ignition moves to stoichiometric mixture fraction regions at 900 K. The combustion mode analysis based on hydroxyl and formaldehyde is conducted to distinguish between the low- and high-temperature combustion regions. Most importantly, to study the stabilization mechanism, the chemical explosive mode analysis (CEMA) is conducted based on analysis on the local flow time scale and the chemical time scale. During the early stage of ignition, a balance between reaction and mixing implies that cool flame propagates from the ignition spots through the entire flow field. And during the quasi-steady state, autoignition plays a dominant role." @default.
- W2905796730 created "2019-01-01" @default.
- W2905796730 creator A5023261675 @default.
- W2905796730 creator A5038776919 @default.
- W2905796730 creator A5049372190 @default.
- W2905796730 creator A5088573265 @default.
- W2905796730 date "2019-04-01" @default.
- W2905796730 modified "2023-10-16" @default.
- W2905796730 title "Effects of oxygen concentrations on the ignition and quasi-steady processes of n-heptane spray flames using large eddy simulation" @default.
- W2905796730 cites W1520097462 @default.
- W2905796730 cites W1963872220 @default.
- W2905796730 cites W1965096775 @default.
- W2905796730 cites W1965258398 @default.
- W2905796730 cites W1965963495 @default.
- W2905796730 cites W1971651856 @default.
- W2905796730 cites W1972002877 @default.
- W2905796730 cites W1972490838 @default.
- W2905796730 cites W1976132390 @default.
- W2905796730 cites W1976951432 @default.
- W2905796730 cites W1981799239 @default.
- W2905796730 cites W1984853982 @default.
- W2905796730 cites W1985777186 @default.
- W2905796730 cites W1986005039 @default.
- W2905796730 cites W1988966431 @default.
- W2905796730 cites W1989682258 @default.
- W2905796730 cites W1991441947 @default.
- W2905796730 cites W1991446922 @default.
- W2905796730 cites W1991521784 @default.
- W2905796730 cites W1994036092 @default.
- W2905796730 cites W2005803020 @default.
- W2905796730 cites W2010116665 @default.
- W2905796730 cites W2013661887 @default.
- W2905796730 cites W2022845286 @default.
- W2905796730 cites W2031171101 @default.
- W2905796730 cites W2031631004 @default.
- W2905796730 cites W2031939808 @default.
- W2905796730 cites W2034051185 @default.
- W2905796730 cites W2039655098 @default.
- W2905796730 cites W2042550472 @default.
- W2905796730 cites W2058612903 @default.
- W2905796730 cites W2061689544 @default.
- W2905796730 cites W2062121253 @default.
- W2905796730 cites W2067874318 @default.
- W2905796730 cites W2071414157 @default.
- W2905796730 cites W2071831180 @default.
- W2905796730 cites W2074192703 @default.
- W2905796730 cites W2078197802 @default.
- W2905796730 cites W2081450993 @default.
- W2905796730 cites W2083157080 @default.
- W2905796730 cites W2084389971 @default.
- W2905796730 cites W2088534441 @default.
- W2905796730 cites W2088808680 @default.
- W2905796730 cites W2090278855 @default.
- W2905796730 cites W2109064560 @default.
- W2905796730 cites W2141445301 @default.
- W2905796730 cites W2165070086 @default.
- W2905796730 cites W2171157391 @default.
- W2905796730 cites W2196051894 @default.
- W2905796730 cites W2202847983 @default.
- W2905796730 cites W2298770046 @default.
- W2905796730 cites W2334128933 @default.
- W2905796730 cites W2470399027 @default.
- W2905796730 cites W2518577139 @default.
- W2905796730 cites W2525303377 @default.
- W2905796730 cites W2529647905 @default.
- W2905796730 cites W2530614469 @default.
- W2905796730 cites W2531244520 @default.
- W2905796730 cites W2538494903 @default.
- W2905796730 cites W2549923217 @default.
- W2905796730 cites W2558673843 @default.
- W2905796730 cites W2580683961 @default.
- W2905796730 cites W2586148549 @default.
- W2905796730 cites W2604033998 @default.
- W2905796730 cites W2621806959 @default.
- W2905796730 cites W2638852917 @default.
- W2905796730 cites W2767288833 @default.
- W2905796730 cites W2771626937 @default.
- W2905796730 cites W280615693 @default.
- W2905796730 cites W2887350054 @default.
- W2905796730 cites W985478853 @default.
- W2905796730 doi "https://doi.org/10.1016/j.fuel.2018.12.097" @default.
- W2905796730 hasPublicationYear "2019" @default.
- W2905796730 type Work @default.
- W2905796730 sameAs 2905796730 @default.
- W2905796730 citedByCount "16" @default.
- W2905796730 countsByYear W29057967302019 @default.
- W2905796730 countsByYear W29057967302020 @default.
- W2905796730 countsByYear W29057967302021 @default.
- W2905796730 countsByYear W29057967302022 @default.
- W2905796730 countsByYear W29057967302023 @default.
- W2905796730 crossrefType "journal-article" @default.
- W2905796730 hasAuthorship W2905796730A5023261675 @default.
- W2905796730 hasAuthorship W2905796730A5038776919 @default.
- W2905796730 hasAuthorship W2905796730A5049372190 @default.
- W2905796730 hasAuthorship W2905796730A5088573265 @default.
- W2905796730 hasConcept C103206924 @default.
- W2905796730 hasConcept C105923489 @default.
- W2905796730 hasConcept C113196181 @default.