Matches in SemOpenAlex for { <https://semopenalex.org/work/W2905837515> ?p ?o ?g. }
- W2905837515 endingPage "222" @default.
- W2905837515 startingPage "209" @default.
- W2905837515 abstract "In recent years, it has been observed that there is an increasing rate of road accidents due to the low vigilance of drivers. Thus, the estimation of drivers' vigilance state plays a significant role in public transportation safety. We have adopted a feature fusion strategy that combines the electroencephalogram (EEG) signals collected from various sites of the human brain, including forehead, temporal, and posterior and forehead electrooculogram (forehead-EOG) signals, to address this factor. The level of vigilance is predicted through a new learning model known as double-layered neural network with subnetwork nodes (DNNSNs), which comprises several subnetwork nodes, and each node in turn is composed of many hidden nodes that have various capabilities of feature selection (dimension reduced), feature learning, etc. The proposed single modality that uses only forehead-EOG signal exhibits a mean root-mean-square error (RMSE) of 0.12 and a mean Pearson product-moment correlation coefficient (COR) of 0.78. On one hand, an EEG signal achieved a mean RMSE of 0.13 and a mean COR of 0.72. Whereas, on the other, the proposed multimodality achieved values of 0.09 and 0.85 for the mean RMSE and the mean COR, respectively. Experimental results show that the proposed DNNSN with multimodality fusion outperforms the model with single modality for vigilance estimation due to the complementary information between forehead-EOG and EEG. After a favorable learning rate was applied to the input layer, the mean RMSE/COR improved to 0.11/0.79, 0.12/0.74, and 0.08/0.86, respectively. Hence, this quantitative analysis proves that the proposed method provides better feasibility and efficiency learning capability and surmounts other state-of-the-art techniques." @default.
- W2905837515 created "2019-01-01" @default.
- W2905837515 creator A5004214379 @default.
- W2905837515 creator A5040440605 @default.
- W2905837515 creator A5040641469 @default.
- W2905837515 creator A5043446785 @default.
- W2905837515 creator A5056335002 @default.
- W2905837515 creator A5064666806 @default.
- W2905837515 creator A5075069444 @default.
- W2905837515 date "2021-03-01" @default.
- W2905837515 modified "2023-10-16" @default.
- W2905837515 title "A Regression Method With Subnetwork Neurons for Vigilance Estimation Using EOG and EEG" @default.
- W2905837515 cites W1541210109 @default.
- W2905837515 cites W1548156550 @default.
- W2905837515 cites W1575396710 @default.
- W2905837515 cites W1969363575 @default.
- W2905837515 cites W197066864 @default.
- W2905837515 cites W1973433968 @default.
- W2905837515 cites W1973962646 @default.
- W2905837515 cites W1979069952 @default.
- W2905837515 cites W1993192093 @default.
- W2905837515 cites W1996754940 @default.
- W2905837515 cites W2002716918 @default.
- W2905837515 cites W2007320090 @default.
- W2905837515 cites W2011055801 @default.
- W2905837515 cites W2017170637 @default.
- W2905837515 cites W2022803262 @default.
- W2905837515 cites W2026131661 @default.
- W2905837515 cites W2029520770 @default.
- W2905837515 cites W2035331608 @default.
- W2905837515 cites W2052604480 @default.
- W2905837515 cites W2052770734 @default.
- W2905837515 cites W2052925195 @default.
- W2905837515 cites W2057017203 @default.
- W2905837515 cites W2061879449 @default.
- W2905837515 cites W2063896293 @default.
- W2905837515 cites W206483964 @default.
- W2905837515 cites W2071878275 @default.
- W2905837515 cites W2083543775 @default.
- W2905837515 cites W2083767335 @default.
- W2905837515 cites W2085986654 @default.
- W2905837515 cites W2089453973 @default.
- W2905837515 cites W2092015957 @default.
- W2905837515 cites W2092728879 @default.
- W2905837515 cites W2093449404 @default.
- W2905837515 cites W2097117768 @default.
- W2905837515 cites W2116261113 @default.
- W2905837515 cites W2120409505 @default.
- W2905837515 cites W2126666959 @default.
- W2905837515 cites W2128495200 @default.
- W2905837515 cites W2131338924 @default.
- W2905837515 cites W2136922672 @default.
- W2905837515 cites W2142578527 @default.
- W2905837515 cites W2147413692 @default.
- W2905837515 cites W2149709356 @default.
- W2905837515 cites W2153635508 @default.
- W2905837515 cites W2242976112 @default.
- W2905837515 cites W2329528962 @default.
- W2905837515 cites W2344244807 @default.
- W2905837515 cites W2518058967 @default.
- W2905837515 cites W2525487527 @default.
- W2905837515 cites W2558193840 @default.
- W2905837515 cites W2561849210 @default.
- W2905837515 cites W2590210438 @default.
- W2905837515 cites W2598673810 @default.
- W2905837515 cites W2645827484 @default.
- W2905837515 cites W2775018596 @default.
- W2905837515 cites W2919115771 @default.
- W2905837515 cites W1996277006 @default.
- W2905837515 doi "https://doi.org/10.1109/tcds.2018.2889223" @default.
- W2905837515 hasPublicationYear "2021" @default.
- W2905837515 type Work @default.
- W2905837515 sameAs 2905837515 @default.
- W2905837515 citedByCount "30" @default.
- W2905837515 countsByYear W29058375152019 @default.
- W2905837515 countsByYear W29058375152020 @default.
- W2905837515 countsByYear W29058375152021 @default.
- W2905837515 countsByYear W29058375152022 @default.
- W2905837515 countsByYear W29058375152023 @default.
- W2905837515 crossrefType "journal-article" @default.
- W2905837515 hasAuthorship W2905837515A5004214379 @default.
- W2905837515 hasAuthorship W2905837515A5040440605 @default.
- W2905837515 hasAuthorship W2905837515A5040641469 @default.
- W2905837515 hasAuthorship W2905837515A5043446785 @default.
- W2905837515 hasAuthorship W2905837515A5056335002 @default.
- W2905837515 hasAuthorship W2905837515A5064666806 @default.
- W2905837515 hasAuthorship W2905837515A5075069444 @default.
- W2905837515 hasConcept C105795698 @default.
- W2905837515 hasConcept C118552586 @default.
- W2905837515 hasConcept C139945424 @default.
- W2905837515 hasConcept C141071460 @default.
- W2905837515 hasConcept C153180895 @default.
- W2905837515 hasConcept C154945302 @default.
- W2905837515 hasConcept C15744967 @default.
- W2905837515 hasConcept C169760540 @default.
- W2905837515 hasConcept C192769605 @default.
- W2905837515 hasConcept C2780186347 @default.
- W2905837515 hasConcept C2780446394 @default.