Matches in SemOpenAlex for { <https://semopenalex.org/work/W2905908047> ?p ?o ?g. }
- W2905908047 endingPage "1066" @default.
- W2905908047 startingPage "1049" @default.
- W2905908047 abstract "The spatial distribution of urban areas at the national and regional scales is critical for urban planners and governments to design sustainable and environment-friendly future development plans. The nighttime lights (NTL) data provide an effective way to monitor the urban at different scales however is usually achieved by using empirical threshold-based algorithms. This study proposed a novel Artificial Neural Network (ANN) approach, using moderate resolution imageries as NTL, MODIS NDVI and land surface temperature data, to map urban areas. Both random and maximum dissimilarity distance algorithm sampling methods were considered and compared. The validation of the urban areas extracted from MDA-based ANN against the 2011 US national land cover data showed a reasonable quality (overall accuracy = 97.84; Kappa = 0.74) and achieved more accurate result than the threshold method. This study demonstrates that ANN can provide an effective, rapid, and accurate alternative in extracting urban built-up areas from NTL." @default.
- W2905908047 created "2019-01-01" @default.
- W2905908047 creator A5005536337 @default.
- W2905908047 creator A5043686349 @default.
- W2905908047 creator A5062549428 @default.
- W2905908047 date "2019-03-21" @default.
- W2905908047 modified "2023-10-17" @default.
- W2905908047 title "Extraction of urban built-up areas from nighttime lights using artificial neural network" @default.
- W2905908047 cites W196050778 @default.
- W2905908047 cites W1963877158 @default.
- W2905908047 cites W1969466612 @default.
- W2905908047 cites W1969901116 @default.
- W2905908047 cites W1970435246 @default.
- W2905908047 cites W1973749534 @default.
- W2905908047 cites W1977091958 @default.
- W2905908047 cites W1979136858 @default.
- W2905908047 cites W1983078406 @default.
- W2905908047 cites W1983564473 @default.
- W2905908047 cites W1991995284 @default.
- W2905908047 cites W1993889058 @default.
- W2905908047 cites W2001075407 @default.
- W2905908047 cites W2003136961 @default.
- W2905908047 cites W2004126227 @default.
- W2905908047 cites W2010989045 @default.
- W2905908047 cites W2015780109 @default.
- W2905908047 cites W2016943428 @default.
- W2905908047 cites W2018076663 @default.
- W2905908047 cites W2023201792 @default.
- W2905908047 cites W2024910708 @default.
- W2905908047 cites W2032969363 @default.
- W2905908047 cites W2034906331 @default.
- W2905908047 cites W2042262869 @default.
- W2905908047 cites W2042611667 @default.
- W2905908047 cites W2049827513 @default.
- W2905908047 cites W2054484478 @default.
- W2905908047 cites W2061699609 @default.
- W2905908047 cites W2069624290 @default.
- W2905908047 cites W2071916435 @default.
- W2905908047 cites W2091793895 @default.
- W2905908047 cites W2094748225 @default.
- W2905908047 cites W2094886960 @default.
- W2905908047 cites W2108020892 @default.
- W2905908047 cites W2112274493 @default.
- W2905908047 cites W2118691014 @default.
- W2905908047 cites W2127229335 @default.
- W2905908047 cites W2135617432 @default.
- W2905908047 cites W2135822449 @default.
- W2905908047 cites W2142487694 @default.
- W2905908047 cites W2142893550 @default.
- W2905908047 cites W2143830832 @default.
- W2905908047 cites W2145923836 @default.
- W2905908047 cites W2157563912 @default.
- W2905908047 cites W2230486561 @default.
- W2905908047 cites W2328057635 @default.
- W2905908047 cites W2462332352 @default.
- W2905908047 cites W2463883034 @default.
- W2905908047 cites W2500678475 @default.
- W2905908047 cites W2529139408 @default.
- W2905908047 cites W2590347033 @default.
- W2905908047 cites W2596128158 @default.
- W2905908047 cites W2735958528 @default.
- W2905908047 cites W2740094577 @default.
- W2905908047 cites W2757842640 @default.
- W2905908047 cites W2761543327 @default.
- W2905908047 cites W4376595762 @default.
- W2905908047 cites W3150806421 @default.
- W2905908047 doi "https://doi.org/10.1080/10106049.2018.1559887" @default.
- W2905908047 hasPublicationYear "2019" @default.
- W2905908047 type Work @default.
- W2905908047 sameAs 2905908047 @default.
- W2905908047 citedByCount "18" @default.
- W2905908047 countsByYear W29059080472019 @default.
- W2905908047 countsByYear W29059080472020 @default.
- W2905908047 countsByYear W29059080472021 @default.
- W2905908047 countsByYear W29059080472022 @default.
- W2905908047 countsByYear W29059080472023 @default.
- W2905908047 crossrefType "journal-article" @default.
- W2905908047 hasAuthorship W2905908047A5005536337 @default.
- W2905908047 hasAuthorship W2905908047A5043686349 @default.
- W2905908047 hasAuthorship W2905908047A5062549428 @default.
- W2905908047 hasConcept C106131492 @default.
- W2905908047 hasConcept C124101348 @default.
- W2905908047 hasConcept C127413603 @default.
- W2905908047 hasConcept C140779682 @default.
- W2905908047 hasConcept C147176958 @default.
- W2905908047 hasConcept C154945302 @default.
- W2905908047 hasConcept C205649164 @default.
- W2905908047 hasConcept C2780648208 @default.
- W2905908047 hasConcept C31972630 @default.
- W2905908047 hasConcept C41008148 @default.
- W2905908047 hasConcept C4792198 @default.
- W2905908047 hasConcept C49545453 @default.
- W2905908047 hasConcept C50644808 @default.
- W2905908047 hasConcept C62649853 @default.
- W2905908047 hasConceptScore W2905908047C106131492 @default.
- W2905908047 hasConceptScore W2905908047C124101348 @default.
- W2905908047 hasConceptScore W2905908047C127413603 @default.
- W2905908047 hasConceptScore W2905908047C140779682 @default.