Matches in SemOpenAlex for { <https://semopenalex.org/work/W2905915376> ?p ?o ?g. }
- W2905915376 endingPage "6093" @default.
- W2905915376 startingPage "6084" @default.
- W2905915376 abstract "Feature extraction and classification play an important role in brain–computer interface (BCI) systems. In traditional approaches, methods in pattern recognition field are adopted to solve these problems. Nowadays, the deep learning theory has developed so fast that researchers have employed it in many areas like computer vision and speech recognition, which have achieved remarkable results. However, few people introduce the deep learning method into the study of biomedical signals, especially EEG signals. In this paper, a wavelet transform-based input, which combines the time-frequency images of C3, Cz, and C4 channels, is proposed to extract the feature of motor imagery EEG signal. Then, a 2-Layer convolutional neural network is built as the classifier and convolutional kernels of different sizes are validated. The performance obtained by the proposed approach is evaluated by accuracy and Kappa value. The accuracy on dataset III from BCI competition II reaches 90%, and the best Kappa value on dataset 2a from competition IV is greater than many of other methods. In addition, the proposed method utilizes a resized small input, which reduces calculation complexity, so the training period is relatively faster. The results show that the method using convolutional neural network can be comparable or better than the other state-of-the-art approaches, and the performance will be improved when there is sufficient data." @default.
- W2905915376 created "2019-01-01" @default.
- W2905915376 creator A5001340667 @default.
- W2905915376 creator A5018221142 @default.
- W2905915376 creator A5023925791 @default.
- W2905915376 creator A5051904305 @default.
- W2905915376 creator A5052477302 @default.
- W2905915376 creator A5066786495 @default.
- W2905915376 creator A5073746039 @default.
- W2905915376 creator A5081980183 @default.
- W2905915376 creator A5083089425 @default.
- W2905915376 date "2019-01-01" @default.
- W2905915376 modified "2023-10-17" @default.
- W2905915376 title "Wavelet Transform Time-Frequency Image and Convolutional Network-Based Motor Imagery EEG Classification" @default.
- W2905915376 cites W1718539190 @default.
- W2905915376 cites W2004104731 @default.
- W2905915376 cites W2010371409 @default.
- W2905915376 cites W2024083195 @default.
- W2905915376 cites W2059915684 @default.
- W2905915376 cites W2084204380 @default.
- W2905915376 cites W2112563323 @default.
- W2905915376 cites W2128637458 @default.
- W2905915376 cites W2133565549 @default.
- W2905915376 cites W2151669316 @default.
- W2905915376 cites W2153912116 @default.
- W2905915376 cites W2153925452 @default.
- W2905915376 cites W2354225344 @default.
- W2905915376 cites W2423195739 @default.
- W2905915376 cites W2441318008 @default.
- W2905915376 cites W2534599926 @default.
- W2905915376 cites W2551178936 @default.
- W2905915376 cites W2557301950 @default.
- W2905915376 cites W2623656704 @default.
- W2905915376 cites W2741186702 @default.
- W2905915376 cites W2751159520 @default.
- W2905915376 doi "https://doi.org/10.1109/access.2018.2889093" @default.
- W2905915376 hasPublicationYear "2019" @default.
- W2905915376 type Work @default.
- W2905915376 sameAs 2905915376 @default.
- W2905915376 citedByCount "114" @default.
- W2905915376 countsByYear W29059153762019 @default.
- W2905915376 countsByYear W29059153762020 @default.
- W2905915376 countsByYear W29059153762021 @default.
- W2905915376 countsByYear W29059153762022 @default.
- W2905915376 countsByYear W29059153762023 @default.
- W2905915376 crossrefType "journal-article" @default.
- W2905915376 hasAuthorship W2905915376A5001340667 @default.
- W2905915376 hasAuthorship W2905915376A5018221142 @default.
- W2905915376 hasAuthorship W2905915376A5023925791 @default.
- W2905915376 hasAuthorship W2905915376A5051904305 @default.
- W2905915376 hasAuthorship W2905915376A5052477302 @default.
- W2905915376 hasAuthorship W2905915376A5066786495 @default.
- W2905915376 hasAuthorship W2905915376A5073746039 @default.
- W2905915376 hasAuthorship W2905915376A5081980183 @default.
- W2905915376 hasAuthorship W2905915376A5083089425 @default.
- W2905915376 hasBestOaLocation W29059153761 @default.
- W2905915376 hasConcept C106131492 @default.
- W2905915376 hasConcept C142433447 @default.
- W2905915376 hasConcept C153180895 @default.
- W2905915376 hasConcept C154945302 @default.
- W2905915376 hasConcept C15744967 @default.
- W2905915376 hasConcept C169760540 @default.
- W2905915376 hasConcept C173201364 @default.
- W2905915376 hasConcept C196216189 @default.
- W2905915376 hasConcept C28490314 @default.
- W2905915376 hasConcept C31972630 @default.
- W2905915376 hasConcept C41008148 @default.
- W2905915376 hasConcept C46286280 @default.
- W2905915376 hasConcept C47432892 @default.
- W2905915376 hasConcept C522805319 @default.
- W2905915376 hasConcept C54808283 @default.
- W2905915376 hasConcept C95722684 @default.
- W2905915376 hasConceptScore W2905915376C106131492 @default.
- W2905915376 hasConceptScore W2905915376C142433447 @default.
- W2905915376 hasConceptScore W2905915376C153180895 @default.
- W2905915376 hasConceptScore W2905915376C154945302 @default.
- W2905915376 hasConceptScore W2905915376C15744967 @default.
- W2905915376 hasConceptScore W2905915376C169760540 @default.
- W2905915376 hasConceptScore W2905915376C173201364 @default.
- W2905915376 hasConceptScore W2905915376C196216189 @default.
- W2905915376 hasConceptScore W2905915376C28490314 @default.
- W2905915376 hasConceptScore W2905915376C31972630 @default.
- W2905915376 hasConceptScore W2905915376C41008148 @default.
- W2905915376 hasConceptScore W2905915376C46286280 @default.
- W2905915376 hasConceptScore W2905915376C47432892 @default.
- W2905915376 hasConceptScore W2905915376C522805319 @default.
- W2905915376 hasConceptScore W2905915376C54808283 @default.
- W2905915376 hasConceptScore W2905915376C95722684 @default.
- W2905915376 hasFunder F4320321001 @default.
- W2905915376 hasFunder F4320322769 @default.
- W2905915376 hasFunder F4320335777 @default.
- W2905915376 hasFunder F4320335787 @default.
- W2905915376 hasLocation W29059153761 @default.
- W2905915376 hasLocation W29059153762 @default.
- W2905915376 hasOpenAccess W2905915376 @default.
- W2905915376 hasPrimaryLocation W29059153761 @default.
- W2905915376 hasRelatedWork W1498321036 @default.
- W2905915376 hasRelatedWork W2020584285 @default.