Matches in SemOpenAlex for { <https://semopenalex.org/work/W2906089612> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2906089612 endingPage "37" @default.
- W2906089612 startingPage "26" @default.
- W2906089612 abstract "In general, obesity is calculated using the BMI, which is found to have limitations of use when we insert only one type of non-quantitative data as a crisp value, which is commonly used, or even create an obesity forecasting model using data mining techniques. If there is an input of weight and height data as a forecasting factor in various types of data, such as crisp value, estimated value and Fuzzy Linguistic Term value, etc. The algorithm will not possibly work under the data mining technique with such input data. This research presented the solution for this problem in order to enable data mining techniques under limitations of inserted data, including crisp value, estimated value and fuzzy linguistic term value, for forecasting obesity. The researchers created a fuzzy database system in the form of Conceptual Meta Schema to support fuzzy attributed data storage. In addition, there were 3 types of fuzzy attribute matching as follows; Type 1 was matching crisp value with fuzzy linguistic term value, Type 2 was matching estimated value with fuzzy linguistic term value, and Type 3 was matching fuzzy linguistic term value with fuzzy linguistic term value, respectively. The attribute node from these fuzzy attributes would be selected to be used in the work of data mining techniques. Therefore, in this research, the researchers presented and compared the fuzzy model of working under the algorithm of data mining techniques in the form called fuzzy neural network and fuzzy decision tree techniques. The research result, it was found that the appropriate models for predicting obesity were fuzzy neural network algorithm with the neural network structure being 31-3-3, momentum at 0.2, learning rate at 0.3, under dividing data to test with cross-validation folds = 10 yielded accuracy value, precision value, recall value and f-measure at 84.3%, 82.7%, 84.3%, and 82.8%, respectively.Keywords: Obesity, Fuzzy Neural Net, Fuzzy Decision Tree, Fuzzy Attribute Matching, Forecasting Model" @default.
- W2906089612 created "2019-01-01" @default.
- W2906089612 creator A5040770862 @default.
- W2906089612 date "2018-11-15" @default.
- W2906089612 modified "2023-09-23" @default.
- W2906089612 title "The Development of Obesity Forecasting Model using Fuzzy Data Mining Techniques: Case study of the Primary School in Lower Northern Provinces (Thailand)" @default.
- W2906089612 cites W1970383722 @default.
- W2906089612 cites W2096768134 @default.
- W2906089612 cites W2147798832 @default.
- W2906089612 cites W2410695220 @default.
- W2906089612 cites W2470463504 @default.
- W2906089612 cites W428585213 @default.
- W2906089612 doi "https://doi.org/10.14456/nujst.2018.19" @default.
- W2906089612 hasPublicationYear "2018" @default.
- W2906089612 type Work @default.
- W2906089612 sameAs 2906089612 @default.
- W2906089612 citedByCount "0" @default.
- W2906089612 crossrefType "journal-article" @default.
- W2906089612 hasAuthorship W2906089612A5040770862 @default.
- W2906089612 hasConcept C105795698 @default.
- W2906089612 hasConcept C119857082 @default.
- W2906089612 hasConcept C124101348 @default.
- W2906089612 hasConcept C127385683 @default.
- W2906089612 hasConcept C148671577 @default.
- W2906089612 hasConcept C154945302 @default.
- W2906089612 hasConcept C165064840 @default.
- W2906089612 hasConcept C170260401 @default.
- W2906089612 hasConcept C1883856 @default.
- W2906089612 hasConcept C2776291640 @default.
- W2906089612 hasConcept C33923547 @default.
- W2906089612 hasConcept C41008148 @default.
- W2906089612 hasConcept C42011625 @default.
- W2906089612 hasConcept C58166 @default.
- W2906089612 hasConceptScore W2906089612C105795698 @default.
- W2906089612 hasConceptScore W2906089612C119857082 @default.
- W2906089612 hasConceptScore W2906089612C124101348 @default.
- W2906089612 hasConceptScore W2906089612C127385683 @default.
- W2906089612 hasConceptScore W2906089612C148671577 @default.
- W2906089612 hasConceptScore W2906089612C154945302 @default.
- W2906089612 hasConceptScore W2906089612C165064840 @default.
- W2906089612 hasConceptScore W2906089612C170260401 @default.
- W2906089612 hasConceptScore W2906089612C1883856 @default.
- W2906089612 hasConceptScore W2906089612C2776291640 @default.
- W2906089612 hasConceptScore W2906089612C33923547 @default.
- W2906089612 hasConceptScore W2906089612C41008148 @default.
- W2906089612 hasConceptScore W2906089612C42011625 @default.
- W2906089612 hasConceptScore W2906089612C58166 @default.
- W2906089612 hasIssue "4" @default.
- W2906089612 hasLocation W29060896121 @default.
- W2906089612 hasOpenAccess W2906089612 @default.
- W2906089612 hasPrimaryLocation W29060896121 @default.
- W2906089612 hasRelatedWork W1534760011 @default.
- W2906089612 hasRelatedWork W1566669783 @default.
- W2906089612 hasRelatedWork W1927276560 @default.
- W2906089612 hasRelatedWork W1967795181 @default.
- W2906089612 hasRelatedWork W2038986713 @default.
- W2906089612 hasRelatedWork W2074091312 @default.
- W2906089612 hasRelatedWork W2100284472 @default.
- W2906089612 hasRelatedWork W2119199823 @default.
- W2906089612 hasRelatedWork W2142014597 @default.
- W2906089612 hasRelatedWork W2154675268 @default.
- W2906089612 hasRelatedWork W2158583649 @default.
- W2906089612 hasRelatedWork W2171083853 @default.
- W2906089612 hasRelatedWork W2241341019 @default.
- W2906089612 hasRelatedWork W2377945352 @default.
- W2906089612 hasRelatedWork W2382003158 @default.
- W2906089612 hasRelatedWork W2583316723 @default.
- W2906089612 hasRelatedWork W26559424 @default.
- W2906089612 hasRelatedWork W278071023 @default.
- W2906089612 hasRelatedWork W3044479590 @default.
- W2906089612 hasRelatedWork W3092402765 @default.
- W2906089612 hasVolume "26" @default.
- W2906089612 isParatext "false" @default.
- W2906089612 isRetracted "false" @default.
- W2906089612 magId "2906089612" @default.
- W2906089612 workType "article" @default.