Matches in SemOpenAlex for { <https://semopenalex.org/work/W2906103632> ?p ?o ?g. }
- W2906103632 endingPage "e185097" @default.
- W2906103632 startingPage "e185097" @default.
- W2906103632 abstract "Accurate prediction of outcomes among patients in intensive care units (ICUs) is important for clinical research and monitoring care quality. Most existing prediction models do not take full advantage of the electronic health record, using only the single worst value of laboratory tests and vital signs and largely ignoring information present in free-text notes. Whether capturing more of the available data and applying machine learning and natural language processing (NLP) can improve and automate the prediction of outcomes among patients in the ICU remains unknown.To evaluate the change in power for a mortality prediction model among patients in the ICU achieved by incorporating measures of clinical trajectory together with NLP of clinical text and to assess the generalizability of this approach.This retrospective cohort study included 101 196 patients with a first-time admission to the ICU and a length of stay of at least 4 hours. Twenty ICUs at 2 academic medical centers (University of California, San Francisco [UCSF], and Beth Israel Deaconess Medical Center [BIDMC], Boston, Massachusetts) and 1 community hospital (Mills-Peninsula Medical Center [MPMC], Burlingame, California) contributed data from January 1, 2001, through June 1, 2017. Data were analyzed from July 1, 2017, through August 1, 2018.In-hospital mortality and model discrimination as assessed by the area under the receiver operating characteristic curve (AUC) and model calibration as assessed by the modified Hosmer-Lemeshow statistic.Among 101 196 patients included in the analysis, 51.3% (n = 51 899) were male, with a mean (SD) age of 61.3 (17.1) years; their in-hospital mortality rate was 10.4% (n = 10 505). A baseline model using only the highest and lowest observed values for each laboratory test result or vital sign achieved a cross-validated AUC of 0.831 (95% CI, 0.830-0.832). In contrast, that model augmented with measures of clinical trajectory achieved an AUC of 0.899 (95% CI, 0.896-0.902; P < .001 for AUC difference). Further augmenting this model with NLP-derived terms associated with mortality further increased the AUC to 0.922 (95% CI, 0.916-0.924; P < .001). These NLP-derived terms were associated with improved model performance even when applied across sites (AUC difference for UCSF: 0.077 to 0.021; AUC difference for MPMC: 0.071 to 0.051; AUC difference for BIDMC: 0.035 to 0.043; P < .001) when augmenting with NLP at each site.Intensive care unit mortality prediction models incorporating measures of clinical trajectory and NLP-derived terms yielded excellent predictive performance and generalized well in this sample of hospitals. The role of these automated algorithms, particularly those using unstructured data from notes and other sources, in clinical research and quality improvement seems to merit additional investigation." @default.
- W2906103632 created "2019-01-01" @default.
- W2906103632 creator A5006726024 @default.
- W2906103632 creator A5015624122 @default.
- W2906103632 creator A5016472411 @default.
- W2906103632 creator A5018161370 @default.
- W2906103632 creator A5036724703 @default.
- W2906103632 creator A5042636483 @default.
- W2906103632 creator A5052786052 @default.
- W2906103632 creator A5073697748 @default.
- W2906103632 creator A5084069368 @default.
- W2906103632 creator A5086339023 @default.
- W2906103632 creator A5088807067 @default.
- W2906103632 date "2018-12-21" @default.
- W2906103632 modified "2023-10-16" @default.
- W2906103632 title "Validation of Prediction Models for Critical Care Outcomes Using Natural Language Processing of Electronic Health Record Data" @default.
- W2906103632 cites W1966716734 @default.
- W2906103632 cites W1989191486 @default.
- W2906103632 cites W1992745512 @default.
- W2906103632 cites W2000566182 @default.
- W2906103632 cites W2007463346 @default.
- W2906103632 cites W2007553222 @default.
- W2906103632 cites W2022020282 @default.
- W2906103632 cites W2029438417 @default.
- W2906103632 cites W2052145351 @default.
- W2906103632 cites W2070268065 @default.
- W2906103632 cites W2078271269 @default.
- W2906103632 cites W2082594298 @default.
- W2906103632 cites W2106107776 @default.
- W2906103632 cites W2110317531 @default.
- W2906103632 cites W2112831158 @default.
- W2906103632 cites W2115200234 @default.
- W2906103632 cites W2128349740 @default.
- W2906103632 cites W2141007997 @default.
- W2906103632 cites W2141220041 @default.
- W2906103632 cites W2151499551 @default.
- W2906103632 cites W2153064780 @default.
- W2906103632 cites W2156518033 @default.
- W2906103632 cites W2158698691 @default.
- W2906103632 cites W2167032822 @default.
- W2906103632 cites W2169685811 @default.
- W2906103632 cites W2173951838 @default.
- W2906103632 cites W2396881363 @default.
- W2906103632 cites W2498119267 @default.
- W2906103632 cites W2615919757 @default.
- W2906103632 cites W2787894218 @default.
- W2906103632 cites W2792409793 @default.
- W2906103632 cites W2793981925 @default.
- W2906103632 cites W2795884566 @default.
- W2906103632 cites W3098949126 @default.
- W2906103632 cites W4213009331 @default.
- W2906103632 cites W4247329205 @default.
- W2906103632 cites W4247943214 @default.
- W2906103632 cites W45588658 @default.
- W2906103632 doi "https://doi.org/10.1001/jamanetworkopen.2018.5097" @default.
- W2906103632 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6324323" @default.
- W2906103632 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30646310" @default.
- W2906103632 hasPublicationYear "2018" @default.
- W2906103632 type Work @default.
- W2906103632 sameAs 2906103632 @default.
- W2906103632 citedByCount "68" @default.
- W2906103632 countsByYear W29061036322018 @default.
- W2906103632 countsByYear W29061036322019 @default.
- W2906103632 countsByYear W29061036322020 @default.
- W2906103632 countsByYear W29061036322021 @default.
- W2906103632 countsByYear W29061036322022 @default.
- W2906103632 countsByYear W29061036322023 @default.
- W2906103632 crossrefType "journal-article" @default.
- W2906103632 hasAuthorship W2906103632A5006726024 @default.
- W2906103632 hasAuthorship W2906103632A5015624122 @default.
- W2906103632 hasAuthorship W2906103632A5016472411 @default.
- W2906103632 hasAuthorship W2906103632A5018161370 @default.
- W2906103632 hasAuthorship W2906103632A5036724703 @default.
- W2906103632 hasAuthorship W2906103632A5042636483 @default.
- W2906103632 hasAuthorship W2906103632A5052786052 @default.
- W2906103632 hasAuthorship W2906103632A5073697748 @default.
- W2906103632 hasAuthorship W2906103632A5084069368 @default.
- W2906103632 hasAuthorship W2906103632A5086339023 @default.
- W2906103632 hasAuthorship W2906103632A5088807067 @default.
- W2906103632 hasBestOaLocation W29061036321 @default.
- W2906103632 hasConcept C105795698 @default.
- W2906103632 hasConcept C111472728 @default.
- W2906103632 hasConcept C119857082 @default.
- W2906103632 hasConcept C126322002 @default.
- W2906103632 hasConcept C138885662 @default.
- W2906103632 hasConcept C141071460 @default.
- W2906103632 hasConcept C154945302 @default.
- W2906103632 hasConcept C160735492 @default.
- W2906103632 hasConcept C162324750 @default.
- W2906103632 hasConcept C167135981 @default.
- W2906103632 hasConcept C177713679 @default.
- W2906103632 hasConcept C194828623 @default.
- W2906103632 hasConcept C195910791 @default.
- W2906103632 hasConcept C27158222 @default.
- W2906103632 hasConcept C2776890885 @default.
- W2906103632 hasConcept C2778136018 @default.
- W2906103632 hasConcept C2987404301 @default.
- W2906103632 hasConcept C3018060332 @default.