Matches in SemOpenAlex for { <https://semopenalex.org/work/W2906183097> ?p ?o ?g. }
- W2906183097 endingPage "155" @default.
- W2906183097 startingPage "140" @default.
- W2906183097 abstract "Abstract Ordinal regression naturally presents class imbalance distribution, because the samples of the boundary classes tend to have lower appearing probability than that of the other classes. As the most common solutions for class imbalance problems, the traditional oversampling algorithms can improve the classification of minority classes, but they result in the problem of over generalization at the same time, where the synthetic samples are created in incorrect regions. In the context of ordinal regression, over generalization can damage the ordering of space distribution of samples, thereby hamper the ordinal regression models to benefit from ordering information. In this paper, we propose a generation direction-aware Synthetic Minority oversampling technique to deal exclusively with imbalanced Ordinal Regression (SMOR). SMOR for each candidate generation direction computes a selection weight of being used to yield synthetic samples. By considering the ordering of the classes, the candidate generation directions, which may potentially distort ordinal sample structure, will tend to be assigned low selection weights. In this way, SMOR improves the ordering of minority classes without severely damaging the existing ordering of the problem. Extensive experiments with three ordinal regression classifiers show that our proposed method outperforms existing typical oversampling algorithms in terms of the Average of Mean Absolute Error ( A M A E )and the Maximum Mean Absolute Error ( M M A E )." @default.
- W2906183097 created "2019-01-01" @default.
- W2906183097 creator A5001033170 @default.
- W2906183097 creator A5018617528 @default.
- W2906183097 creator A5067580558 @default.
- W2906183097 creator A5086852193 @default.
- W2906183097 creator A5089907202 @default.
- W2906183097 date "2019-02-01" @default.
- W2906183097 modified "2023-10-18" @default.
- W2906183097 title "Minority oversampling for imbalanced ordinal regression" @default.
- W2906183097 cites W1045349118 @default.
- W2906183097 cites W1941659294 @default.
- W2906183097 cites W1978982221 @default.
- W2906183097 cites W1980437782 @default.
- W2906183097 cites W1980896222 @default.
- W2906183097 cites W1984790258 @default.
- W2906183097 cites W1993220166 @default.
- W2906183097 cites W1994445591 @default.
- W2906183097 cites W1996523702 @default.
- W2906183097 cites W2000642020 @default.
- W2906183097 cites W2011376672 @default.
- W2906183097 cites W2015681982 @default.
- W2906183097 cites W2018061754 @default.
- W2906183097 cites W2018186689 @default.
- W2906183097 cites W2024223694 @default.
- W2906183097 cites W2040010062 @default.
- W2906183097 cites W2040181375 @default.
- W2906183097 cites W2071157591 @default.
- W2906183097 cites W2071785112 @default.
- W2906183097 cites W2073645537 @default.
- W2906183097 cites W2076272581 @default.
- W2906183097 cites W2083551746 @default.
- W2906183097 cites W2087240369 @default.
- W2906183097 cites W2096235960 @default.
- W2906183097 cites W2103614420 @default.
- W2906183097 cites W2104167780 @default.
- W2906183097 cites W2107138773 @default.
- W2906183097 cites W2118978333 @default.
- W2906183097 cites W2124648328 @default.
- W2906183097 cites W2124710650 @default.
- W2906183097 cites W2125927049 @default.
- W2906183097 cites W2148143831 @default.
- W2906183097 cites W2154173865 @default.
- W2906183097 cites W2185967890 @default.
- W2906183097 cites W2190044943 @default.
- W2906183097 cites W2338318698 @default.
- W2906183097 cites W2512057750 @default.
- W2906183097 cites W2588336250 @default.
- W2906183097 cites W2590133488 @default.
- W2906183097 cites W2736435690 @default.
- W2906183097 cites W2761075141 @default.
- W2906183097 cites W2793511696 @default.
- W2906183097 cites W2800788706 @default.
- W2906183097 cites W2892824836 @default.
- W2906183097 cites W2894870892 @default.
- W2906183097 cites W4244458990 @default.
- W2906183097 doi "https://doi.org/10.1016/j.knosys.2018.12.021" @default.
- W2906183097 hasPublicationYear "2019" @default.
- W2906183097 type Work @default.
- W2906183097 sameAs 2906183097 @default.
- W2906183097 citedByCount "28" @default.
- W2906183097 countsByYear W29061830972019 @default.
- W2906183097 countsByYear W29061830972020 @default.
- W2906183097 countsByYear W29061830972021 @default.
- W2906183097 countsByYear W29061830972022 @default.
- W2906183097 countsByYear W29061830972023 @default.
- W2906183097 crossrefType "journal-article" @default.
- W2906183097 hasAuthorship W2906183097A5001033170 @default.
- W2906183097 hasAuthorship W2906183097A5018617528 @default.
- W2906183097 hasAuthorship W2906183097A5067580558 @default.
- W2906183097 hasAuthorship W2906183097A5086852193 @default.
- W2906183097 hasAuthorship W2906183097A5089907202 @default.
- W2906183097 hasConcept C105795698 @default.
- W2906183097 hasConcept C110313322 @default.
- W2906183097 hasConcept C119857082 @default.
- W2906183097 hasConcept C124101348 @default.
- W2906183097 hasConcept C154945302 @default.
- W2906183097 hasConcept C197323446 @default.
- W2906183097 hasConcept C2776257435 @default.
- W2906183097 hasConcept C33923547 @default.
- W2906183097 hasConcept C41008148 @default.
- W2906183097 hasConcept C76155785 @default.
- W2906183097 hasConcept C81386100 @default.
- W2906183097 hasConcept C83546350 @default.
- W2906183097 hasConceptScore W2906183097C105795698 @default.
- W2906183097 hasConceptScore W2906183097C110313322 @default.
- W2906183097 hasConceptScore W2906183097C119857082 @default.
- W2906183097 hasConceptScore W2906183097C124101348 @default.
- W2906183097 hasConceptScore W2906183097C154945302 @default.
- W2906183097 hasConceptScore W2906183097C197323446 @default.
- W2906183097 hasConceptScore W2906183097C2776257435 @default.
- W2906183097 hasConceptScore W2906183097C33923547 @default.
- W2906183097 hasConceptScore W2906183097C41008148 @default.
- W2906183097 hasConceptScore W2906183097C76155785 @default.
- W2906183097 hasConceptScore W2906183097C81386100 @default.
- W2906183097 hasConceptScore W2906183097C83546350 @default.
- W2906183097 hasFunder F4320321001 @default.
- W2906183097 hasLocation W29061830971 @default.