Matches in SemOpenAlex for { <https://semopenalex.org/work/W2906193625> ?p ?o ?g. }
- W2906193625 abstract "In this paper present the main existing methods and means of determining the depth of anesthesia. Among the methods considered, the following groups were distinguished: analysis of electroencephalograms (EEG), analysis of electrocardiograms (ECG), and complex analysis of biosignals. The results obtained in previous studies are systematized and prospective directions for further research are determined, in particular the use of machine learning tools for the analysis of electrocardiograms and their characteristics and training of deep neural networks. In order to study the capabilities of neural networks as systems for classifying biosignals, a deep convolution neural network was constructed to classify ECG signals with the presence or absence of arrhythmias. Input data for those network were 30-second ECG signals without preliminary processing, and the classification accuracy was 68.3%. The results of such a classification system indicate the advisability of using deep training to determine arrhythmias, and the need for preprocessing ECG and pre-identified characteristics, among which can be the magnitude of the signal energy in different frequency ranges, the signal after the removal of the trend and the signal parameters in the time domain. Current studies in the field of determining the depth of anesthesia by analyzing EEG and ECG signals make not only the technical limitations of currently used technologies, but also the fact that the number of anesthetics having a unique effect on the brain and its signals is constantly increasing. Among the technical constraints, the sensitivity of sedimentation depth to noise is the most important and the unequal response to anesthetics of different types. In this direction, many studies are devoted to improving the accuracy of determining the depth of the nerve system, by analyzing the EEG, EEG and ECG signals, only the ECG, and through the comprehensive analysis of the signals that can be obtained from the patient. In many studies, the authors conclude that alternative methods for determining the depth of a patient's sedation have better results, but at the same time they are insufficiently tested or have other technical limitations. A promising technology for determining the depth of nerve sedation via ECG analysis may also be the use of neural networks, since such systems are capable of training on labeled data, they can classify data in conditions of unknown patterns and are resistant to noise in incoming signals. Simultaneously with the use of neural networks perspective, one can use the methods of their analysis, as classification systems, in order to identify the best configurations of their parameters. Systems for the analysis of classification systems can serve both for selecting the best of them and for their adaptive combination in order to improve the classification result. Ref. 54, tabl. 1." @default.
- W2906193625 created "2019-01-01" @default.
- W2906193625 creator A5003065559 @default.
- W2906193625 creator A5083463900 @default.
- W2906193625 date "2018-08-31" @default.
- W2906193625 modified "2023-09-30" @default.
- W2906193625 title "Techniques and Methods for Biosignal Analysis for Monitoring the Depth of Anesthesia" @default.
- W2906193625 cites W1525297397 @default.
- W2906193625 cites W1536828437 @default.
- W2906193625 cites W1880637233 @default.
- W2906193625 cites W1920871857 @default.
- W2906193625 cites W1967993123 @default.
- W2906193625 cites W1969940892 @default.
- W2906193625 cites W1974144862 @default.
- W2906193625 cites W1976646617 @default.
- W2906193625 cites W1980306773 @default.
- W2906193625 cites W1998314658 @default.
- W2906193625 cites W1999423218 @default.
- W2906193625 cites W2010657474 @default.
- W2906193625 cites W2014683958 @default.
- W2906193625 cites W2017286875 @default.
- W2906193625 cites W2026955558 @default.
- W2906193625 cites W2030613322 @default.
- W2906193625 cites W2033583993 @default.
- W2906193625 cites W2040327687 @default.
- W2906193625 cites W2043115626 @default.
- W2906193625 cites W2044170013 @default.
- W2906193625 cites W2055434964 @default.
- W2906193625 cites W2065250073 @default.
- W2906193625 cites W2076166949 @default.
- W2906193625 cites W2084444573 @default.
- W2906193625 cites W2094793030 @default.
- W2906193625 cites W2102096535 @default.
- W2906193625 cites W2114706583 @default.
- W2906193625 cites W2116106036 @default.
- W2906193625 cites W2142275259 @default.
- W2906193625 cites W2146263973 @default.
- W2906193625 cites W2150590430 @default.
- W2906193625 cites W2153230907 @default.
- W2906193625 cites W2162480886 @default.
- W2906193625 cites W2162800060 @default.
- W2906193625 cites W2165611870 @default.
- W2906193625 cites W2165944663 @default.
- W2906193625 cites W2168020168 @default.
- W2906193625 cites W2291961022 @default.
- W2906193625 cites W2311607323 @default.
- W2906193625 cites W2317088313 @default.
- W2906193625 cites W2329865178 @default.
- W2906193625 cites W2398905005 @default.
- W2906193625 cites W2588514436 @default.
- W2906193625 cites W2605126039 @default.
- W2906193625 cites W2609862566 @default.
- W2906193625 cites W2616875318 @default.
- W2906193625 cites W2737007366 @default.
- W2906193625 cites W2782944630 @default.
- W2906193625 cites W89197320 @default.
- W2906193625 doi "https://doi.org/10.20535/2523-4455.2018.23.3.125236" @default.
- W2906193625 hasPublicationYear "2018" @default.
- W2906193625 type Work @default.
- W2906193625 sameAs 2906193625 @default.
- W2906193625 citedByCount "0" @default.
- W2906193625 crossrefType "journal-article" @default.
- W2906193625 hasAuthorship W2906193625A5003065559 @default.
- W2906193625 hasAuthorship W2906193625A5083463900 @default.
- W2906193625 hasBestOaLocation W29061936251 @default.
- W2906193625 hasConcept C104267543 @default.
- W2906193625 hasConcept C106131492 @default.
- W2906193625 hasConcept C115961682 @default.
- W2906193625 hasConcept C118552586 @default.
- W2906193625 hasConcept C119857082 @default.
- W2906193625 hasConcept C127413603 @default.
- W2906193625 hasConcept C153180895 @default.
- W2906193625 hasConcept C154945302 @default.
- W2906193625 hasConcept C199360897 @default.
- W2906193625 hasConcept C202444582 @default.
- W2906193625 hasConcept C21200559 @default.
- W2906193625 hasConcept C24326235 @default.
- W2906193625 hasConcept C2779055241 @default.
- W2906193625 hasConcept C2779843651 @default.
- W2906193625 hasConcept C31972630 @default.
- W2906193625 hasConcept C33923547 @default.
- W2906193625 hasConcept C34736171 @default.
- W2906193625 hasConcept C41008148 @default.
- W2906193625 hasConcept C50644808 @default.
- W2906193625 hasConcept C522805319 @default.
- W2906193625 hasConcept C554190296 @default.
- W2906193625 hasConcept C71924100 @default.
- W2906193625 hasConcept C76155785 @default.
- W2906193625 hasConcept C9652623 @default.
- W2906193625 hasConcept C99498987 @default.
- W2906193625 hasConceptScore W2906193625C104267543 @default.
- W2906193625 hasConceptScore W2906193625C106131492 @default.
- W2906193625 hasConceptScore W2906193625C115961682 @default.
- W2906193625 hasConceptScore W2906193625C118552586 @default.
- W2906193625 hasConceptScore W2906193625C119857082 @default.
- W2906193625 hasConceptScore W2906193625C127413603 @default.
- W2906193625 hasConceptScore W2906193625C153180895 @default.
- W2906193625 hasConceptScore W2906193625C154945302 @default.
- W2906193625 hasConceptScore W2906193625C199360897 @default.
- W2906193625 hasConceptScore W2906193625C202444582 @default.