Matches in SemOpenAlex for { <https://semopenalex.org/work/W2906253453> ?p ?o ?g. }
- W2906253453 abstract "The spectral properties of the singularly perturbed self-adjoint Landau Hamiltonian $A_alpha =(i nabla + A)^2 + alphadelta$ in $L^2(R^2)$ with a $delta$-potential supported on a finite $C^{1,1}$-smooth curve $Sigma$ are studied. Here $A = frac{1}{2} B (-x_2, x_1)^top$ is the vector potential, $B>0$ is the strength of the homogeneous magnetic field, and $alphain L^infty(Sigma)$ is a position-dependent real coefficient modeling the strength of the singular interaction on the curve $Sigma$. After a general discussion of the qualitative spectral properties of $A_alpha$ and its resolvent, one of the main objectives in the present paper is a local spectral analysis of $A_alpha$ near the Landau levels $B(2q+1)$. Under various conditions on $alpha$ it is shown that the perturbation smears the Landau levels into eigenvalue clusters, and the accumulation rate of the eigenvalues within these clusters is determined in terms of the capacity of the support of $alpha$. Furthermore, the use of Landau Hamiltonians with $delta$-perturbations as model operators for more realistic quantum systems is justified by showing that $A_alpha$ can be approximated in the norm resolvent sense by a family of Landau Hamiltonians with suitably scaled regular potentials." @default.
- W2906253453 created "2019-01-01" @default.
- W2906253453 creator A5063600060 @default.
- W2906253453 creator A5063953301 @default.
- W2906253453 creator A5068105705 @default.
- W2906253453 creator A5069380657 @default.
- W2906253453 date "2018-12-21" @default.
- W2906253453 modified "2023-09-27" @default.
- W2906253453 title "The Landau Hamiltonian with $delta$-potentials supported on curves" @default.
- W2906253453 cites W1509223670 @default.
- W2906253453 cites W1511103951 @default.
- W2906253453 cites W1522699118 @default.
- W2906253453 cites W1560025751 @default.
- W2906253453 cites W1575147392 @default.
- W2906253453 cites W1575781023 @default.
- W2906253453 cites W1585894047 @default.
- W2906253453 cites W1591238430 @default.
- W2906253453 cites W1592958377 @default.
- W2906253453 cites W1602383637 @default.
- W2906253453 cites W1620095627 @default.
- W2906253453 cites W1694793654 @default.
- W2906253453 cites W1860235307 @default.
- W2906253453 cites W1868422878 @default.
- W2906253453 cites W190458580 @default.
- W2906253453 cites W1966403302 @default.
- W2906253453 cites W1971390084 @default.
- W2906253453 cites W1973429304 @default.
- W2906253453 cites W1978960915 @default.
- W2906253453 cites W1982485181 @default.
- W2906253453 cites W1988790042 @default.
- W2906253453 cites W1999382308 @default.
- W2906253453 cites W1999887009 @default.
- W2906253453 cites W2019517543 @default.
- W2906253453 cites W2029997366 @default.
- W2906253453 cites W2036570969 @default.
- W2906253453 cites W2038009313 @default.
- W2906253453 cites W2047780963 @default.
- W2906253453 cites W2055208100 @default.
- W2906253453 cites W2064010975 @default.
- W2906253453 cites W2066457144 @default.
- W2906253453 cites W2074597571 @default.
- W2906253453 cites W2087943808 @default.
- W2906253453 cites W2091213843 @default.
- W2906253453 cites W2096262735 @default.
- W2906253453 cites W2115336412 @default.
- W2906253453 cites W2137978398 @default.
- W2906253453 cites W2153942057 @default.
- W2906253453 cites W2155825009 @default.
- W2906253453 cites W2158801938 @default.
- W2906253453 cites W2160472047 @default.
- W2906253453 cites W224874298 @default.
- W2906253453 cites W227029647 @default.
- W2906253453 cites W2312332114 @default.
- W2906253453 cites W2611052948 @default.
- W2906253453 cites W2616491541 @default.
- W2906253453 cites W2766911090 @default.
- W2906253453 cites W2952498288 @default.
- W2906253453 cites W2963569439 @default.
- W2906253453 cites W2963665848 @default.
- W2906253453 cites W2963949855 @default.
- W2906253453 cites W2964173172 @default.
- W2906253453 cites W3003273691 @default.
- W2906253453 cites W3100063825 @default.
- W2906253453 cites W3101813935 @default.
- W2906253453 cites W3104729950 @default.
- W2906253453 cites W3104963874 @default.
- W2906253453 cites W3105729117 @default.
- W2906253453 cites W3122124615 @default.
- W2906253453 cites W3122140546 @default.
- W2906253453 cites W3122825304 @default.
- W2906253453 cites W573146027 @default.
- W2906253453 cites W628388122 @default.
- W2906253453 cites W2284047404 @default.
- W2906253453 hasPublicationYear "2018" @default.
- W2906253453 type Work @default.
- W2906253453 sameAs 2906253453 @default.
- W2906253453 citedByCount "0" @default.
- W2906253453 crossrefType "posted-content" @default.
- W2906253453 hasAuthorship W2906253453A5063600060 @default.
- W2906253453 hasAuthorship W2906253453A5063953301 @default.
- W2906253453 hasAuthorship W2906253453A5068105705 @default.
- W2906253453 hasAuthorship W2906253453A5069380657 @default.
- W2906253453 hasConcept C115260700 @default.
- W2906253453 hasConcept C121332964 @default.
- W2906253453 hasConcept C126255220 @default.
- W2906253453 hasConcept C130787639 @default.
- W2906253453 hasConcept C134306372 @default.
- W2906253453 hasConcept C158693339 @default.
- W2906253453 hasConcept C196267783 @default.
- W2906253453 hasConcept C2778049214 @default.
- W2906253453 hasConcept C33923547 @default.
- W2906253453 hasConcept C37914503 @default.
- W2906253453 hasConcept C50899005 @default.
- W2906253453 hasConcept C62520636 @default.
- W2906253453 hasConceptScore W2906253453C115260700 @default.
- W2906253453 hasConceptScore W2906253453C121332964 @default.
- W2906253453 hasConceptScore W2906253453C126255220 @default.
- W2906253453 hasConceptScore W2906253453C130787639 @default.
- W2906253453 hasConceptScore W2906253453C134306372 @default.
- W2906253453 hasConceptScore W2906253453C158693339 @default.