Matches in SemOpenAlex for { <https://semopenalex.org/work/W2906292261> ?p ?o ?g. }
- W2906292261 endingPage "402" @default.
- W2906292261 startingPage "381" @default.
- W2906292261 abstract "Robust compressive sensing (CS) aims to recover the sparse signals from noisy measurements perturbed by non-Gaussian (i.e., heavy-tailed) noises, where traditional CS reconstruction algorithms may perform poorly owing to utilizing the l2 error norm in optimization. In this paper, we propose a novel maximum correntropy adaptation approach for robust CS reconstruction. The task is formulated as a l0 regularized maximum correntropy criterion (l0-MCC) optimization problem and is solved by adaptive filtering approach. The proposed l0-MCC algorithm has a simple algorithm structure and can adaptively estimate the sparsity. It can efficiently alleviate the negative impact of noise in the presence of large outliers. Moreover, a novel theoretical analysis on convergence of l0-MCC is also performed. Furthermore, a mini-batch-based l0-MCC (MB-l0-MCC) algorithm is developed to speed up the convergence. Comparison with existing robust CS reconstruction algorithms is conducted via simulations, showing that the proposed methods can achieve better performance than existing state-of-the-art algorithms." @default.
- W2906292261 created "2019-01-01" @default.
- W2906292261 creator A5000740943 @default.
- W2906292261 creator A5020093525 @default.
- W2906292261 creator A5074063024 @default.
- W2906292261 creator A5077852542 @default.
- W2906292261 creator A5086529957 @default.
- W2906292261 date "2019-04-01" @default.
- W2906292261 modified "2023-10-17" @default.
- W2906292261 title "Maximum correntropy adaptation approach for robust compressive sensing reconstruction" @default.
- W2906292261 cites W1544576535 @default.
- W2906292261 cites W1701760339 @default.
- W2906292261 cites W1971402995 @default.
- W2906292261 cites W1977252496 @default.
- W2906292261 cites W1980907873 @default.
- W2906292261 cites W1993405482 @default.
- W2906292261 cites W2001045763 @default.
- W2906292261 cites W2004544971 @default.
- W2906292261 cites W2010535094 @default.
- W2906292261 cites W2013625218 @default.
- W2906292261 cites W2015418199 @default.
- W2906292261 cites W2017369124 @default.
- W2906292261 cites W2052581396 @default.
- W2906292261 cites W2079654589 @default.
- W2906292261 cites W2082476922 @default.
- W2906292261 cites W2088622335 @default.
- W2906292261 cites W2101675075 @default.
- W2906292261 cites W2119667497 @default.
- W2906292261 cites W2119862467 @default.
- W2906292261 cites W2127271355 @default.
- W2906292261 cites W2129638195 @default.
- W2906292261 cites W2135160607 @default.
- W2906292261 cites W2145096794 @default.
- W2906292261 cites W2151693816 @default.
- W2906292261 cites W2153663612 @default.
- W2906292261 cites W2160536217 @default.
- W2906292261 cites W2183805236 @default.
- W2906292261 cites W2343516804 @default.
- W2906292261 cites W2519420704 @default.
- W2906292261 cites W2535199417 @default.
- W2906292261 cites W2612194700 @default.
- W2906292261 cites W2767372095 @default.
- W2906292261 cites W2949483514 @default.
- W2906292261 cites W2963134661 @default.
- W2906292261 cites W2963322354 @default.
- W2906292261 cites W3024853581 @default.
- W2906292261 cites W4250955649 @default.
- W2906292261 cites W783608400 @default.
- W2906292261 doi "https://doi.org/10.1016/j.ins.2018.12.039" @default.
- W2906292261 hasPublicationYear "2019" @default.
- W2906292261 type Work @default.
- W2906292261 sameAs 2906292261 @default.
- W2906292261 citedByCount "17" @default.
- W2906292261 countsByYear W29062922612019 @default.
- W2906292261 countsByYear W29062922612020 @default.
- W2906292261 countsByYear W29062922612021 @default.
- W2906292261 countsByYear W29062922612022 @default.
- W2906292261 countsByYear W29062922612023 @default.
- W2906292261 crossrefType "journal-article" @default.
- W2906292261 hasAuthorship W2906292261A5000740943 @default.
- W2906292261 hasAuthorship W2906292261A5020093525 @default.
- W2906292261 hasAuthorship W2906292261A5074063024 @default.
- W2906292261 hasAuthorship W2906292261A5077852542 @default.
- W2906292261 hasAuthorship W2906292261A5086529957 @default.
- W2906292261 hasConcept C11413529 @default.
- W2906292261 hasConcept C115961682 @default.
- W2906292261 hasConcept C121332964 @default.
- W2906292261 hasConcept C124851039 @default.
- W2906292261 hasConcept C126255220 @default.
- W2906292261 hasConcept C154945302 @default.
- W2906292261 hasConcept C162324750 @default.
- W2906292261 hasConcept C163716315 @default.
- W2906292261 hasConcept C17744445 @default.
- W2906292261 hasConcept C191795146 @default.
- W2906292261 hasConcept C199539241 @default.
- W2906292261 hasConcept C2777303404 @default.
- W2906292261 hasConcept C33923547 @default.
- W2906292261 hasConcept C41008148 @default.
- W2906292261 hasConcept C50522688 @default.
- W2906292261 hasConcept C62520636 @default.
- W2906292261 hasConcept C79337645 @default.
- W2906292261 hasConcept C99498987 @default.
- W2906292261 hasConceptScore W2906292261C11413529 @default.
- W2906292261 hasConceptScore W2906292261C115961682 @default.
- W2906292261 hasConceptScore W2906292261C121332964 @default.
- W2906292261 hasConceptScore W2906292261C124851039 @default.
- W2906292261 hasConceptScore W2906292261C126255220 @default.
- W2906292261 hasConceptScore W2906292261C154945302 @default.
- W2906292261 hasConceptScore W2906292261C162324750 @default.
- W2906292261 hasConceptScore W2906292261C163716315 @default.
- W2906292261 hasConceptScore W2906292261C17744445 @default.
- W2906292261 hasConceptScore W2906292261C191795146 @default.
- W2906292261 hasConceptScore W2906292261C199539241 @default.
- W2906292261 hasConceptScore W2906292261C2777303404 @default.
- W2906292261 hasConceptScore W2906292261C33923547 @default.
- W2906292261 hasConceptScore W2906292261C41008148 @default.
- W2906292261 hasConceptScore W2906292261C50522688 @default.
- W2906292261 hasConceptScore W2906292261C62520636 @default.