Matches in SemOpenAlex for { <https://semopenalex.org/work/W2906304617> ?p ?o ?g. }
- W2906304617 endingPage "7" @default.
- W2906304617 startingPage "7" @default.
- W2906304617 abstract "The traveling-salesman problem can be regarded as an NP-hard problem. To better solve the best solution, many heuristic algorithms, such as simulated annealing, ant-colony optimization, tabu search, and genetic algorithm, were used. However, these algorithms either are easy to fall into local optimization or have low or poor convergence performance. This paper proposes a new algorithm based on simulated annealing and gene-expression programming to better solve the problem. In the algorithm, we use simulated annealing to increase the diversity of the Gene Expression Programming (GEP) population and improve the ability of global search. The comparative experiments results, using six benchmark instances, show that the proposed algorithm outperforms other well-known heuristic algorithms in terms of the best solution, the worst solution, the running time of the algorithm, the rate of difference between the best solution and the known optimal solution, and the convergent speed of algorithms." @default.
- W2906304617 created "2019-01-01" @default.
- W2906304617 creator A5001770391 @default.
- W2906304617 creator A5016717153 @default.
- W2906304617 creator A5027790457 @default.
- W2906304617 creator A5050064900 @default.
- W2906304617 creator A5054674018 @default.
- W2906304617 creator A5065810347 @default.
- W2906304617 creator A5086911783 @default.
- W2906304617 date "2018-12-25" @default.
- W2906304617 modified "2023-09-29" @default.
- W2906304617 title "Traveling-Salesman-Problem Algorithm Based on Simulated Annealing and Gene-Expression Programming" @default.
- W2906304617 cites W1826740954 @default.
- W2906304617 cites W1980275149 @default.
- W2906304617 cites W2013803636 @default.
- W2906304617 cites W2024060531 @default.
- W2906304617 cites W2039069560 @default.
- W2906304617 cites W2050568179 @default.
- W2906304617 cites W2076539542 @default.
- W2906304617 cites W2125581168 @default.
- W2906304617 cites W2160268549 @default.
- W2906304617 cites W2163206542 @default.
- W2906304617 cites W2163428398 @default.
- W2906304617 cites W2165142526 @default.
- W2906304617 cites W2194562489 @default.
- W2906304617 cites W2277794740 @default.
- W2906304617 cites W2289791923 @default.
- W2906304617 cites W2302174052 @default.
- W2906304617 cites W2330201086 @default.
- W2906304617 cites W2515159839 @default.
- W2906304617 cites W2552854184 @default.
- W2906304617 cites W2564567964 @default.
- W2906304617 cites W2583603977 @default.
- W2906304617 cites W2613229031 @default.
- W2906304617 doi "https://doi.org/10.3390/info10010007" @default.
- W2906304617 hasPublicationYear "2018" @default.
- W2906304617 type Work @default.
- W2906304617 sameAs 2906304617 @default.
- W2906304617 citedByCount "38" @default.
- W2906304617 countsByYear W29063046172019 @default.
- W2906304617 countsByYear W29063046172020 @default.
- W2906304617 countsByYear W29063046172021 @default.
- W2906304617 countsByYear W29063046172022 @default.
- W2906304617 countsByYear W29063046172023 @default.
- W2906304617 crossrefType "journal-article" @default.
- W2906304617 hasAuthorship W2906304617A5001770391 @default.
- W2906304617 hasAuthorship W2906304617A5016717153 @default.
- W2906304617 hasAuthorship W2906304617A5027790457 @default.
- W2906304617 hasAuthorship W2906304617A5050064900 @default.
- W2906304617 hasAuthorship W2906304617A5054674018 @default.
- W2906304617 hasAuthorship W2906304617A5065810347 @default.
- W2906304617 hasAuthorship W2906304617A5086911783 @default.
- W2906304617 hasBestOaLocation W29063046171 @default.
- W2906304617 hasConcept C109718341 @default.
- W2906304617 hasConcept C11413529 @default.
- W2906304617 hasConcept C123370116 @default.
- W2906304617 hasConcept C126255220 @default.
- W2906304617 hasConcept C126980161 @default.
- W2906304617 hasConcept C13280743 @default.
- W2906304617 hasConcept C135320971 @default.
- W2906304617 hasConcept C135450995 @default.
- W2906304617 hasConcept C141934464 @default.
- W2906304617 hasConcept C144024400 @default.
- W2906304617 hasConcept C149923435 @default.
- W2906304617 hasConcept C154945302 @default.
- W2906304617 hasConcept C162324750 @default.
- W2906304617 hasConcept C173801870 @default.
- W2906304617 hasConcept C175859090 @default.
- W2906304617 hasConcept C185798385 @default.
- W2906304617 hasConcept C205649164 @default.
- W2906304617 hasConcept C2777303404 @default.
- W2906304617 hasConcept C2908647359 @default.
- W2906304617 hasConcept C33923547 @default.
- W2906304617 hasConcept C40128228 @default.
- W2906304617 hasConcept C41008148 @default.
- W2906304617 hasConcept C50522688 @default.
- W2906304617 hasConcept C6980683 @default.
- W2906304617 hasConceptScore W2906304617C109718341 @default.
- W2906304617 hasConceptScore W2906304617C11413529 @default.
- W2906304617 hasConceptScore W2906304617C123370116 @default.
- W2906304617 hasConceptScore W2906304617C126255220 @default.
- W2906304617 hasConceptScore W2906304617C126980161 @default.
- W2906304617 hasConceptScore W2906304617C13280743 @default.
- W2906304617 hasConceptScore W2906304617C135320971 @default.
- W2906304617 hasConceptScore W2906304617C135450995 @default.
- W2906304617 hasConceptScore W2906304617C141934464 @default.
- W2906304617 hasConceptScore W2906304617C144024400 @default.
- W2906304617 hasConceptScore W2906304617C149923435 @default.
- W2906304617 hasConceptScore W2906304617C154945302 @default.
- W2906304617 hasConceptScore W2906304617C162324750 @default.
- W2906304617 hasConceptScore W2906304617C173801870 @default.
- W2906304617 hasConceptScore W2906304617C175859090 @default.
- W2906304617 hasConceptScore W2906304617C185798385 @default.
- W2906304617 hasConceptScore W2906304617C205649164 @default.
- W2906304617 hasConceptScore W2906304617C2777303404 @default.
- W2906304617 hasConceptScore W2906304617C2908647359 @default.
- W2906304617 hasConceptScore W2906304617C33923547 @default.
- W2906304617 hasConceptScore W2906304617C40128228 @default.