Matches in SemOpenAlex for { <https://semopenalex.org/work/W2906330981> ?p ?o ?g. }
- W2906330981 endingPage "314" @default.
- W2906330981 startingPage "270" @default.
- W2906330981 abstract "Neural networks are mathematical models, inspired by biological processes in the human brain and are able to give computers more “human-like” abilities. Perhaps by examining the way in which the biological brain operates, at both the large-scale and the lower level anatomical level, approaches can be devised that can embody some of these remarkable abilities for use in real-world business applications. One criticism of the neural network approach by business is that they are “black boxes”; they cannot be easily understood. To open this black box an outline of neural-symbolic rule extraction is described and its application to fraud-detection is given. Current practice is to build a Fraud Management System (FMS) based on rules created by fraud experts which is an expensive and time-consuming task and fails to address the problem where the data and relationships change over time. By using a neural network to learn to detect fraud and then extracting its’ knowledge, a new approach is presented." @default.
- W2906330981 created "2019-01-01" @default.
- W2906330981 creator A5066047766 @default.
- W2906330981 date "2011-01-01" @default.
- W2906330981 modified "2023-09-26" @default.
- W2906330981 title "Neural-Symbolic Processing in Business Applications" @default.
- W2906330981 cites W1497218080 @default.
- W2906330981 cites W1505297101 @default.
- W2906330981 cites W1520274356 @default.
- W2906330981 cites W1540343981 @default.
- W2906330981 cites W1599216479 @default.
- W2906330981 cites W1602589614 @default.
- W2906330981 cites W1605607952 @default.
- W2906330981 cites W1608777581 @default.
- W2906330981 cites W1614345895 @default.
- W2906330981 cites W1640335463 @default.
- W2906330981 cites W1976240756 @default.
- W2906330981 cites W1990179744 @default.
- W2906330981 cites W1992740984 @default.
- W2906330981 cites W2022772618 @default.
- W2906330981 cites W2031520589 @default.
- W2906330981 cites W2036677213 @default.
- W2906330981 cites W2042492924 @default.
- W2906330981 cites W2047557500 @default.
- W2906330981 cites W2054129049 @default.
- W2906330981 cites W2056760934 @default.
- W2906330981 cites W2063670896 @default.
- W2906330981 cites W2065204741 @default.
- W2906330981 cites W2069543264 @default.
- W2906330981 cites W2074346829 @default.
- W2906330981 cites W2096266510 @default.
- W2906330981 cites W2101041807 @default.
- W2906330981 cites W2105809068 @default.
- W2906330981 cites W2106346348 @default.
- W2906330981 cites W2106594931 @default.
- W2906330981 cites W2109126850 @default.
- W2906330981 cites W2109721638 @default.
- W2906330981 cites W2115929981 @default.
- W2906330981 cites W2116064496 @default.
- W2906330981 cites W2123119012 @default.
- W2906330981 cites W2125027820 @default.
- W2906330981 cites W2128084896 @default.
- W2906330981 cites W2130313186 @default.
- W2906330981 cites W2132522091 @default.
- W2906330981 cites W2136922672 @default.
- W2906330981 cites W2146200922 @default.
- W2906330981 cites W2155430438 @default.
- W2906330981 cites W2155917479 @default.
- W2906330981 cites W2156297475 @default.
- W2906330981 cites W2160150610 @default.
- W2906330981 cites W2167284263 @default.
- W2906330981 cites W2167374789 @default.
- W2906330981 cites W2536744418 @default.
- W2906330981 cites W3131325962 @default.
- W2906330981 cites W4232953319 @default.
- W2906330981 cites W4236137412 @default.
- W2906330981 cites W4239980194 @default.
- W2906330981 cites W4244296837 @default.
- W2906330981 cites W4250621041 @default.
- W2906330981 cites W81625024 @default.
- W2906330981 cites W2036564246 @default.
- W2906330981 doi "https://doi.org/10.4018/978-1-60960-021-1.ch012" @default.
- W2906330981 hasPublicationYear "2011" @default.
- W2906330981 type Work @default.
- W2906330981 sameAs 2906330981 @default.
- W2906330981 citedByCount "0" @default.
- W2906330981 crossrefType "book-chapter" @default.
- W2906330981 hasAuthorship W2906330981A5066047766 @default.
- W2906330981 hasConcept C10138342 @default.
- W2906330981 hasConcept C144133560 @default.
- W2906330981 hasConcept C145097563 @default.
- W2906330981 hasConcept C2780747020 @default.
- W2906330981 hasConcept C2983355114 @default.
- W2906330981 hasConcept C41008148 @default.
- W2906330981 hasConceptScore W2906330981C10138342 @default.
- W2906330981 hasConceptScore W2906330981C144133560 @default.
- W2906330981 hasConceptScore W2906330981C145097563 @default.
- W2906330981 hasConceptScore W2906330981C2780747020 @default.
- W2906330981 hasConceptScore W2906330981C2983355114 @default.
- W2906330981 hasConceptScore W2906330981C41008148 @default.
- W2906330981 hasLocation W29063309811 @default.
- W2906330981 hasOpenAccess W2906330981 @default.
- W2906330981 hasPrimaryLocation W29063309811 @default.
- W2906330981 hasRelatedWork W1489446631 @default.
- W2906330981 hasRelatedWork W1545533962 @default.
- W2906330981 hasRelatedWork W1908233901 @default.
- W2906330981 hasRelatedWork W2071868512 @default.
- W2906330981 hasRelatedWork W2282251917 @default.
- W2906330981 hasRelatedWork W2290394245 @default.
- W2906330981 hasRelatedWork W2300610770 @default.
- W2906330981 hasRelatedWork W2529908850 @default.
- W2906330981 hasRelatedWork W2585459224 @default.
- W2906330981 hasRelatedWork W2806844806 @default.
- W2906330981 hasRelatedWork W2889593547 @default.
- W2906330981 hasRelatedWork W2923395587 @default.
- W2906330981 hasRelatedWork W2930194845 @default.
- W2906330981 hasRelatedWork W2949423965 @default.
- W2906330981 hasRelatedWork W2978611627 @default.