Matches in SemOpenAlex for { <https://semopenalex.org/work/W2906361504> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2906361504 abstract "Short-term load forecasting is an important part of the energy management system (EMS) and the basis for the safe operation of the power system. In view of the problems of high dimensionality, long time and general precision in load forecasting of existing artificial intelligence algorithms, this paper proposes a short-term load forecasting method based on particle swarm optimization and deep belief network (PSO-DBN). The characteristics of this method are: (1) Calculate the similarity according to the date distance, the type of the week and the meteorological characteristics, and select the similar day according to the similarity; (2) Replace the traditional historical daily load with the similar daily load as the partial input of the algorithm. Improve the prediction accuracy; (3) Construct the DBN prediction model to overcome the problem that the support vector Machines (SVM)training time is long and the BP neural network method is easy to fall into the local optimum; (4) Optimize the weight by usingPSO to optimize the DBN algorithm. Further reduce the degree to which the algorithm is affected by the initial value and reduce the number of iterations. The simulation example demonstrates the effectiveness and good engineering application value of the proposed method." @default.
- W2906361504 created "2019-01-01" @default.
- W2906361504 creator A5013516834 @default.
- W2906361504 creator A5017706762 @default.
- W2906361504 creator A5023293408 @default.
- W2906361504 creator A5029924052 @default.
- W2906361504 creator A5051964346 @default.
- W2906361504 creator A5055621875 @default.
- W2906361504 date "2018-10-01" @default.
- W2906361504 modified "2023-10-07" @default.
- W2906361504 title "Short-term load forecasting of power system based on similar day method and PSO-DBN" @default.
- W2906361504 cites W2011609785 @default.
- W2906361504 cites W2038250306 @default.
- W2906361504 cites W2055408547 @default.
- W2906361504 cites W2136922672 @default.
- W2906361504 cites W2140491475 @default.
- W2906361504 cites W2158442843 @default.
- W2906361504 cites W2490223215 @default.
- W2906361504 doi "https://doi.org/10.1109/ei2.2018.8582143" @default.
- W2906361504 hasPublicationYear "2018" @default.
- W2906361504 type Work @default.
- W2906361504 sameAs 2906361504 @default.
- W2906361504 citedByCount "8" @default.
- W2906361504 countsByYear W29063615042019 @default.
- W2906361504 countsByYear W29063615042021 @default.
- W2906361504 countsByYear W29063615042022 @default.
- W2906361504 countsByYear W29063615042023 @default.
- W2906361504 crossrefType "proceedings-article" @default.
- W2906361504 hasAuthorship W2906361504A5013516834 @default.
- W2906361504 hasAuthorship W2906361504A5017706762 @default.
- W2906361504 hasAuthorship W2906361504A5023293408 @default.
- W2906361504 hasAuthorship W2906361504A5029924052 @default.
- W2906361504 hasAuthorship W2906361504A5051964346 @default.
- W2906361504 hasAuthorship W2906361504A5055621875 @default.
- W2906361504 hasConcept C119857082 @default.
- W2906361504 hasConcept C121332964 @default.
- W2906361504 hasConcept C154945302 @default.
- W2906361504 hasConcept C163258240 @default.
- W2906361504 hasConcept C41008148 @default.
- W2906361504 hasConcept C61797465 @default.
- W2906361504 hasConcept C62520636 @default.
- W2906361504 hasConcept C85617194 @default.
- W2906361504 hasConcept C89227174 @default.
- W2906361504 hasConceptScore W2906361504C119857082 @default.
- W2906361504 hasConceptScore W2906361504C121332964 @default.
- W2906361504 hasConceptScore W2906361504C154945302 @default.
- W2906361504 hasConceptScore W2906361504C163258240 @default.
- W2906361504 hasConceptScore W2906361504C41008148 @default.
- W2906361504 hasConceptScore W2906361504C61797465 @default.
- W2906361504 hasConceptScore W2906361504C62520636 @default.
- W2906361504 hasConceptScore W2906361504C85617194 @default.
- W2906361504 hasConceptScore W2906361504C89227174 @default.
- W2906361504 hasLocation W29063615041 @default.
- W2906361504 hasOpenAccess W2906361504 @default.
- W2906361504 hasPrimaryLocation W29063615041 @default.
- W2906361504 hasRelatedWork W133118532 @default.
- W2906361504 hasRelatedWork W1994429992 @default.
- W2906361504 hasRelatedWork W2098477098 @default.
- W2906361504 hasRelatedWork W2372022541 @default.
- W2906361504 hasRelatedWork W2386542247 @default.
- W2906361504 hasRelatedWork W2565094767 @default.
- W2906361504 hasRelatedWork W2588786037 @default.
- W2906361504 hasRelatedWork W2607465504 @default.
- W2906361504 hasRelatedWork W3019402777 @default.
- W2906361504 hasRelatedWork W2150778332 @default.
- W2906361504 isParatext "false" @default.
- W2906361504 isRetracted "false" @default.
- W2906361504 magId "2906361504" @default.
- W2906361504 workType "article" @default.