Matches in SemOpenAlex for { <https://semopenalex.org/work/W2906432682> ?p ?o ?g. }
- W2906432682 endingPage "25" @default.
- W2906432682 startingPage "14" @default.
- W2906432682 abstract "Automatic multiple choice question (MCQ) generation from a text is a popular research area. MCQs are widely accepted for large-scale assessment in various domains and applications. However, manual generation of MCQs is expensive and time-consuming. Therefore, researchers have been attracted toward automatic MCQ generation since the late 90's. Since then, many systems have been developed for MCQ generation. We perform a systematic review of those systems. This paper presents our findings on the review. We outline a generic workflow for an automatic MCQ generation system. The workflow consists of six phases. For each of these phases, we find and discuss the list of techniques adopted in the literature. We also study the evaluation techniques for assessing the quality of the system generated MCQs. Finally, we identify the areas where the current research focus should be directed toward enriching the literature." @default.
- W2906432682 created "2019-01-01" @default.
- W2906432682 creator A5015406724 @default.
- W2906432682 creator A5088183314 @default.
- W2906432682 date "2020-01-01" @default.
- W2906432682 modified "2023-09-24" @default.
- W2906432682 title "Automatic Multiple Choice Question Generation From Text: A Survey" @default.
- W2906432682 cites W1486421535 @default.
- W2906432682 cites W1493504683 @default.
- W2906432682 cites W1564083362 @default.
- W2906432682 cites W163271066 @default.
- W2906432682 cites W1965158952 @default.
- W2906432682 cites W1965667542 @default.
- W2906432682 cites W1968519644 @default.
- W2906432682 cites W1969346491 @default.
- W2906432682 cites W2011996322 @default.
- W2906432682 cites W2051207411 @default.
- W2906432682 cites W2067001863 @default.
- W2906432682 cites W2069032672 @default.
- W2906432682 cites W2069221834 @default.
- W2906432682 cites W2074507216 @default.
- W2906432682 cites W2087190704 @default.
- W2906432682 cites W2100002838 @default.
- W2906432682 cites W2102381086 @default.
- W2906432682 cites W2106365165 @default.
- W2906432682 cites W2109609717 @default.
- W2906432682 cites W2117540369 @default.
- W2906432682 cites W2118713911 @default.
- W2906432682 cites W2125226531 @default.
- W2906432682 cites W2129496160 @default.
- W2906432682 cites W2150092131 @default.
- W2906432682 cites W2151170651 @default.
- W2906432682 cites W2151466713 @default.
- W2906432682 cites W2158997610 @default.
- W2906432682 cites W2161325192 @default.
- W2906432682 cites W2164107060 @default.
- W2906432682 cites W2183465865 @default.
- W2906432682 cites W2220688940 @default.
- W2906432682 cites W2240244561 @default.
- W2906432682 cites W2251694021 @default.
- W2906432682 cites W2295585877 @default.
- W2906432682 cites W2307608055 @default.
- W2906432682 cites W2324268090 @default.
- W2906432682 cites W2376694580 @default.
- W2906432682 cites W2420011772 @default.
- W2906432682 cites W2517654006 @default.
- W2906432682 cites W2544497094 @default.
- W2906432682 cites W2546248468 @default.
- W2906432682 cites W2547620388 @default.
- W2906432682 cites W2551582814 @default.
- W2906432682 cites W2555668622 @default.
- W2906432682 cites W2559358053 @default.
- W2906432682 cites W2592784990 @default.
- W2906432682 cites W2593434837 @default.
- W2906432682 cites W2624907881 @default.
- W2906432682 cites W2655123653 @default.
- W2906432682 cites W2756495812 @default.
- W2906432682 cites W2758592353 @default.
- W2906432682 cites W2761529087 @default.
- W2906432682 cites W2782473704 @default.
- W2906432682 cites W2789594414 @default.
- W2906432682 cites W2791566576 @default.
- W2906432682 cites W2794117424 @default.
- W2906432682 cites W4242099861 @default.
- W2906432682 cites W4256721538 @default.
- W2906432682 cites W2614582630 @default.
- W2906432682 doi "https://doi.org/10.1109/tlt.2018.2889100" @default.
- W2906432682 hasPublicationYear "2020" @default.
- W2906432682 type Work @default.
- W2906432682 sameAs 2906432682 @default.
- W2906432682 citedByCount "47" @default.
- W2906432682 countsByYear W29064326822019 @default.
- W2906432682 countsByYear W29064326822020 @default.
- W2906432682 countsByYear W29064326822021 @default.
- W2906432682 countsByYear W29064326822022 @default.
- W2906432682 countsByYear W29064326822023 @default.
- W2906432682 crossrefType "journal-article" @default.
- W2906432682 hasAuthorship W2906432682A5015406724 @default.
- W2906432682 hasAuthorship W2906432682A5088183314 @default.
- W2906432682 hasConcept C154945302 @default.
- W2906432682 hasConcept C204321447 @default.
- W2906432682 hasConcept C23123220 @default.
- W2906432682 hasConcept C41008148 @default.
- W2906432682 hasConceptScore W2906432682C154945302 @default.
- W2906432682 hasConceptScore W2906432682C204321447 @default.
- W2906432682 hasConceptScore W2906432682C23123220 @default.
- W2906432682 hasConceptScore W2906432682C41008148 @default.
- W2906432682 hasFunder F4320334771 @default.
- W2906432682 hasIssue "1" @default.
- W2906432682 hasLocation W29064326821 @default.
- W2906432682 hasOpenAccess W2906432682 @default.
- W2906432682 hasPrimaryLocation W29064326821 @default.
- W2906432682 hasRelatedWork W2101955803 @default.
- W2906432682 hasRelatedWork W2119214692 @default.
- W2906432682 hasRelatedWork W2144190808 @default.
- W2906432682 hasRelatedWork W2151447942 @default.
- W2906432682 hasRelatedWork W2357241418 @default.
- W2906432682 hasRelatedWork W2366644548 @default.