Matches in SemOpenAlex for { <https://semopenalex.org/work/W2906439497> ?p ?o ?g. }
- W2906439497 endingPage "947" @default.
- W2906439497 startingPage "930" @default.
- W2906439497 abstract "A typical goal in cognitive psychology is to select the model that provides the best explanation of the observed behavioral data. The Bayes factor provides a principled approach for making these selections, though the integral required to calculate the marginal likelihood for each model is intractable for most cognitive models. In these cases, Monte Carlo techniques must be used to approximate the marginal likelihood, such as thermodynamic integration (TI; Friel & Pettitt, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(3), 589–607 2008; Lartillot & Philippe, Systematic Biology, 55(2), 195–207 2006), which relies on sampling from the posterior at different powers (called power posteriors). TI can become computationally expensive when using population Markov chain Monte Carlo (MCMC) approaches such as differential evolution MCMC (DE-MCMC; Turner et al., Psychological Methods, 18(3), 368 2013) that require several interacting chains per power posterior. Here, we propose a method called thermodynamic integration via differential evolution (TIDE), which aims to reduce the computational burden associated with TI by using a single chain per power posterior (R code available at https://osf.io/ntmgw/ ). We show that when applied to non-hierarchical models, TIDE produces an approximation of the marginal likelihood that closely matches TI. When extended to hierarchical models, we find that certain assumptions about the dependence between the individual- and group-level parameters samples (i.e., dependent/independent) have sizable effects on the TI approximated marginal likelihood. We propose two possible extensions of TIDE to hierarchical models, which closely match the marginal likelihoods obtained through TI with dependent/independent sampling in many, but not all, situations. Based on these findings, we believe that TIDE provides a promising method for estimating marginal likelihoods, though future research should focus on a detailed comparison between the methods of estimating marginal likelihoods for cognitive models." @default.
- W2906439497 created "2019-01-01" @default.
- W2906439497 creator A5079561527 @default.
- W2906439497 creator A5091081681 @default.
- W2906439497 date "2019-01-02" @default.
- W2906439497 modified "2023-09-27" @default.
- W2906439497 title "Thermodynamic integration via differential evolution: A method for estimating marginal likelihoods" @default.
- W2906439497 cites W1922851081 @default.
- W2906439497 cites W1941028167 @default.
- W2906439497 cites W1964154547 @default.
- W2906439497 cites W1971577575 @default.
- W2906439497 cites W1990171595 @default.
- W2906439497 cites W1999228575 @default.
- W2906439497 cites W2010599429 @default.
- W2906439497 cites W2015749074 @default.
- W2906439497 cites W2018415829 @default.
- W2906439497 cites W2030886008 @default.
- W2906439497 cites W2031896757 @default.
- W2906439497 cites W2035446733 @default.
- W2906439497 cites W2040217594 @default.
- W2906439497 cites W2057765075 @default.
- W2906439497 cites W2058189433 @default.
- W2906439497 cites W2059511681 @default.
- W2906439497 cites W2087870570 @default.
- W2906439497 cites W2092872761 @default.
- W2906439497 cites W2098205603 @default.
- W2906439497 cites W2098538101 @default.
- W2906439497 cites W2100476792 @default.
- W2906439497 cites W2102360969 @default.
- W2906439497 cites W2108301111 @default.
- W2906439497 cites W2112591275 @default.
- W2906439497 cites W2115971452 @default.
- W2906439497 cites W2118048521 @default.
- W2906439497 cites W2120669439 @default.
- W2906439497 cites W2129207020 @default.
- W2906439497 cites W2132071585 @default.
- W2906439497 cites W2142635246 @default.
- W2906439497 cites W2144661611 @default.
- W2906439497 cites W2148412534 @default.
- W2906439497 cites W2148534890 @default.
- W2906439497 cites W2151950896 @default.
- W2906439497 cites W2158128575 @default.
- W2906439497 cites W2161015681 @default.
- W2906439497 cites W2162280413 @default.
- W2906439497 cites W2168175751 @default.
- W2906439497 cites W2203714058 @default.
- W2906439497 cites W2290394775 @default.
- W2906439497 cites W2337551207 @default.
- W2906439497 cites W2414323848 @default.
- W2906439497 cites W2507594958 @default.
- W2906439497 cites W2560669458 @default.
- W2906439497 cites W2585218369 @default.
- W2906439497 cites W2587913434 @default.
- W2906439497 cites W2593056190 @default.
- W2906439497 cites W2602422862 @default.
- W2906439497 cites W2609859609 @default.
- W2906439497 cites W2622303260 @default.
- W2906439497 cites W2805341415 @default.
- W2906439497 cites W2892883002 @default.
- W2906439497 cites W2913426552 @default.
- W2906439497 cites W3100796400 @default.
- W2906439497 cites W4211177544 @default.
- W2906439497 cites W4231074670 @default.
- W2906439497 cites W4231781281 @default.
- W2906439497 doi "https://doi.org/10.3758/s13428-018-1172-y" @default.
- W2906439497 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6478771" @default.
- W2906439497 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30604038" @default.
- W2906439497 hasPublicationYear "2019" @default.
- W2906439497 type Work @default.
- W2906439497 sameAs 2906439497 @default.
- W2906439497 citedByCount "13" @default.
- W2906439497 countsByYear W29064394972018 @default.
- W2906439497 countsByYear W29064394972019 @default.
- W2906439497 countsByYear W29064394972020 @default.
- W2906439497 countsByYear W29064394972021 @default.
- W2906439497 countsByYear W29064394972022 @default.
- W2906439497 crossrefType "journal-article" @default.
- W2906439497 hasAuthorship W2906439497A5079561527 @default.
- W2906439497 hasAuthorship W2906439497A5091081681 @default.
- W2906439497 hasBestOaLocation W29064394971 @default.
- W2906439497 hasConcept C105795698 @default.
- W2906439497 hasConcept C107673813 @default.
- W2906439497 hasConcept C111350023 @default.
- W2906439497 hasConcept C11413529 @default.
- W2906439497 hasConcept C119857082 @default.
- W2906439497 hasConcept C13153151 @default.
- W2906439497 hasConcept C132725507 @default.
- W2906439497 hasConcept C142291917 @default.
- W2906439497 hasConcept C152877465 @default.
- W2906439497 hasConcept C154945302 @default.
- W2906439497 hasConcept C158424031 @default.
- W2906439497 hasConcept C19499675 @default.
- W2906439497 hasConcept C197656967 @default.
- W2906439497 hasConcept C207201462 @default.
- W2906439497 hasConcept C28826006 @default.
- W2906439497 hasConcept C33923547 @default.
- W2906439497 hasConcept C41008148 @default.
- W2906439497 hasConcept C57830394 @default.