Matches in SemOpenAlex for { <https://semopenalex.org/work/W2906445168> ?p ?o ?g. }
- W2906445168 endingPage "408" @default.
- W2906445168 startingPage "391" @default.
- W2906445168 abstract "Reliable and predictable ground operations are essential for punctual air traffic movements. Uncertainties in the airborne phase have significantly less impact on flight punctuality than deviations in aircraft ground operations. The ground trajectory of an aircraft primarily consists of the handling processes at the stand, defined as the aircraft turnaround, which are mainly controlled by operational experts. Only the aircraft boarding, which is on the critical path of the turnaround, is driven by the passengers’ experience and willingness or ability to follow the proposed procedures. We used a recurrent neural network approach to predict the progress of a running boarding event. In particular, we implemented and trained the Long Short-Term Memory model. Since no operational data of the specific passenger behavior is available, we used a reliable, validated boarding simulation environment to provide data about the aircraft boarding events. First predictions show that uni-variate input (seat load progress) produces insufficient results, so we consider expected passenger interactions in the aircraft cabin as well. These interactions are aggregated to a prior-developed complexity metric and allow an efficient evaluation of the current boarding progress. With this multi-variate input, our Long Short-Term Memory model achieves appropriate prediction results for the boarding progress." @default.
- W2906445168 created "2019-01-01" @default.
- W2906445168 creator A5001283900 @default.
- W2906445168 creator A5001839757 @default.
- W2906445168 date "2019-01-01" @default.
- W2906445168 modified "2023-10-02" @default.
- W2906445168 title "Machine learning approach to predict aircraft boarding" @default.
- W2906445168 cites W1101486511 @default.
- W2906445168 cites W1685006559 @default.
- W2906445168 cites W1852046222 @default.
- W2906445168 cites W1964139873 @default.
- W2906445168 cites W1967444754 @default.
- W2906445168 cites W2004353783 @default.
- W2906445168 cites W2014916042 @default.
- W2906445168 cites W2046000676 @default.
- W2906445168 cites W2046133783 @default.
- W2906445168 cites W2060491923 @default.
- W2906445168 cites W2064675550 @default.
- W2906445168 cites W2067620243 @default.
- W2906445168 cites W2072218344 @default.
- W2906445168 cites W2080383399 @default.
- W2906445168 cites W2097420628 @default.
- W2906445168 cites W2100595539 @default.
- W2906445168 cites W2117987471 @default.
- W2906445168 cites W2136848157 @default.
- W2906445168 cites W2137448568 @default.
- W2906445168 cites W2158924965 @default.
- W2906445168 cites W2270912008 @default.
- W2906445168 cites W2339372314 @default.
- W2906445168 cites W2385104641 @default.
- W2906445168 cites W2461115526 @default.
- W2906445168 cites W2467504776 @default.
- W2906445168 cites W2509690574 @default.
- W2906445168 cites W2547613975 @default.
- W2906445168 cites W2552977737 @default.
- W2906445168 cites W2557979496 @default.
- W2906445168 cites W2569312527 @default.
- W2906445168 cites W2586209957 @default.
- W2906445168 cites W2593182953 @default.
- W2906445168 cites W2598674404 @default.
- W2906445168 cites W2613261270 @default.
- W2906445168 cites W2617713221 @default.
- W2906445168 cites W2618945128 @default.
- W2906445168 cites W2728025670 @default.
- W2906445168 cites W2735286405 @default.
- W2906445168 cites W2755552418 @default.
- W2906445168 cites W2760658374 @default.
- W2906445168 cites W2764195553 @default.
- W2906445168 cites W2770804625 @default.
- W2906445168 cites W2777453242 @default.
- W2906445168 cites W2780068930 @default.
- W2906445168 cites W2782969169 @default.
- W2906445168 cites W2793235224 @default.
- W2906445168 cites W2794764981 @default.
- W2906445168 cites W2795044595 @default.
- W2906445168 cites W2806521065 @default.
- W2906445168 cites W2885006427 @default.
- W2906445168 cites W2887037553 @default.
- W2906445168 cites W2887879126 @default.
- W2906445168 cites W2897477491 @default.
- W2906445168 cites W2904652262 @default.
- W2906445168 cites W2963048283 @default.
- W2906445168 cites W4240095431 @default.
- W2906445168 cites W4250720101 @default.
- W2906445168 doi "https://doi.org/10.1016/j.trc.2018.09.007" @default.
- W2906445168 hasPublicationYear "2019" @default.
- W2906445168 type Work @default.
- W2906445168 sameAs 2906445168 @default.
- W2906445168 citedByCount "28" @default.
- W2906445168 countsByYear W29064451682018 @default.
- W2906445168 countsByYear W29064451682019 @default.
- W2906445168 countsByYear W29064451682020 @default.
- W2906445168 countsByYear W29064451682021 @default.
- W2906445168 countsByYear W29064451682022 @default.
- W2906445168 countsByYear W29064451682023 @default.
- W2906445168 crossrefType "journal-article" @default.
- W2906445168 hasAuthorship W2906445168A5001283900 @default.
- W2906445168 hasAuthorship W2906445168A5001839757 @default.
- W2906445168 hasConcept C127413603 @default.
- W2906445168 hasConcept C146978453 @default.
- W2906445168 hasConcept C166961238 @default.
- W2906445168 hasConcept C178802073 @default.
- W2906445168 hasConcept C22212356 @default.
- W2906445168 hasConcept C2779548549 @default.
- W2906445168 hasConcept C41008148 @default.
- W2906445168 hasConcept C42475967 @default.
- W2906445168 hasConcept C44154836 @default.
- W2906445168 hasConceptScore W2906445168C127413603 @default.
- W2906445168 hasConceptScore W2906445168C146978453 @default.
- W2906445168 hasConceptScore W2906445168C166961238 @default.
- W2906445168 hasConceptScore W2906445168C178802073 @default.
- W2906445168 hasConceptScore W2906445168C22212356 @default.
- W2906445168 hasConceptScore W2906445168C2779548549 @default.
- W2906445168 hasConceptScore W2906445168C41008148 @default.
- W2906445168 hasConceptScore W2906445168C42475967 @default.
- W2906445168 hasConceptScore W2906445168C44154836 @default.
- W2906445168 hasLocation W29064451681 @default.
- W2906445168 hasOpenAccess W2906445168 @default.