Matches in SemOpenAlex for { <https://semopenalex.org/work/W2906508770> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2906508770 abstract "Transient stability prediction using machine learning algorithms has been highly concerned. Existing researches have made great progress in simplified scenarios, while these simplifications cannot be made in a practical problem. Considering two typical characteristics of power systems: time-varying and data-increasing, two methods of prediction model updating are proposed in this paper. Transfer learning is applied to adding samples to a time-varying system with insufficient training samples. Incremental learning is used to update the prediction model with constantly increasing training samples. Both two methods make the prediction model more robust in a dynamic power system. In IEEE 39-bus system, the proposed methods are tested in angle and frequency stability problem respectively. Results show that transfer learning makes more accurate prediction in a time-varying power system than traditional method and incremental learning enables model updating to be fast enough to be applied online. More importantly, the proposed updating methods can be further investigated for practical application." @default.
- W2906508770 created "2019-01-01" @default.
- W2906508770 creator A5002117674 @default.
- W2906508770 creator A5032759646 @default.
- W2906508770 creator A5046169980 @default.
- W2906508770 creator A5075389451 @default.
- W2906508770 date "2018-10-01" @default.
- W2906508770 modified "2023-09-27" @default.
- W2906508770 title "Adaptive Updating of Power System Transient Stability Prediction Model Based on Data Inheritance" @default.
- W2906508770 cites W1555134231 @default.
- W2906508770 cites W1979170328 @default.
- W2906508770 cites W2022877531 @default.
- W2906508770 cites W2025314144 @default.
- W2906508770 cites W2040411595 @default.
- W2906508770 cites W2122040390 @default.
- W2906508770 cites W2158054309 @default.
- W2906508770 cites W2163657691 @default.
- W2906508770 cites W2165698076 @default.
- W2906508770 cites W2313516183 @default.
- W2906508770 cites W2332213682 @default.
- W2906508770 cites W2607152391 @default.
- W2906508770 cites W2765288873 @default.
- W2906508770 cites W2766403938 @default.
- W2906508770 cites W2807304670 @default.
- W2906508770 doi "https://doi.org/10.1109/ei2.2018.8582552" @default.
- W2906508770 hasPublicationYear "2018" @default.
- W2906508770 type Work @default.
- W2906508770 sameAs 2906508770 @default.
- W2906508770 citedByCount "2" @default.
- W2906508770 countsByYear W29065087702019 @default.
- W2906508770 countsByYear W29065087702023 @default.
- W2906508770 crossrefType "proceedings-article" @default.
- W2906508770 hasAuthorship W2906508770A5002117674 @default.
- W2906508770 hasAuthorship W2906508770A5032759646 @default.
- W2906508770 hasAuthorship W2906508770A5046169980 @default.
- W2906508770 hasAuthorship W2906508770A5075389451 @default.
- W2906508770 hasConcept C111919701 @default.
- W2906508770 hasConcept C112972136 @default.
- W2906508770 hasConcept C119857082 @default.
- W2906508770 hasConcept C121332964 @default.
- W2906508770 hasConcept C154945302 @default.
- W2906508770 hasConcept C163258240 @default.
- W2906508770 hasConcept C2780799671 @default.
- W2906508770 hasConcept C41008148 @default.
- W2906508770 hasConcept C62520636 @default.
- W2906508770 hasConcept C67186912 @default.
- W2906508770 hasConcept C77088390 @default.
- W2906508770 hasConcept C89227174 @default.
- W2906508770 hasConceptScore W2906508770C111919701 @default.
- W2906508770 hasConceptScore W2906508770C112972136 @default.
- W2906508770 hasConceptScore W2906508770C119857082 @default.
- W2906508770 hasConceptScore W2906508770C121332964 @default.
- W2906508770 hasConceptScore W2906508770C154945302 @default.
- W2906508770 hasConceptScore W2906508770C163258240 @default.
- W2906508770 hasConceptScore W2906508770C2780799671 @default.
- W2906508770 hasConceptScore W2906508770C41008148 @default.
- W2906508770 hasConceptScore W2906508770C62520636 @default.
- W2906508770 hasConceptScore W2906508770C67186912 @default.
- W2906508770 hasConceptScore W2906508770C77088390 @default.
- W2906508770 hasConceptScore W2906508770C89227174 @default.
- W2906508770 hasLocation W29065087701 @default.
- W2906508770 hasOpenAccess W2906508770 @default.
- W2906508770 hasPrimaryLocation W29065087701 @default.
- W2906508770 hasRelatedWork W1514891764 @default.
- W2906508770 hasRelatedWork W1911841207 @default.
- W2906508770 hasRelatedWork W1912474284 @default.
- W2906508770 hasRelatedWork W2113610925 @default.
- W2906508770 hasRelatedWork W2351781762 @default.
- W2906508770 hasRelatedWork W2388867616 @default.
- W2906508770 hasRelatedWork W2539397834 @default.
- W2906508770 hasRelatedWork W3156299931 @default.
- W2906508770 hasRelatedWork W3185472940 @default.
- W2906508770 hasRelatedWork W2557214710 @default.
- W2906508770 isParatext "false" @default.
- W2906508770 isRetracted "false" @default.
- W2906508770 magId "2906508770" @default.
- W2906508770 workType "article" @default.