Matches in SemOpenAlex for { <https://semopenalex.org/work/W2906543346> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2906543346 abstract "Common electricity meters measure only the overall energy consumption. To assist in energy savings and to enrich smart home applications with energy data, a detailed breakdown is necessary. Non-Intrusive Load Monitoring (NILM) analyzes the overall electrical signal and separates it into its components, by identifying specific electrical signatures. So far most studies focused on low frequency NILM since standard measurement hardware can be used. In addition some specialized research has been carried out in the high frequency field. The goal of this work is to examine various electrical features and combine them in a holistic manner. Therefore we analyzed low, mid and high frequency features like active and reactive power, harmonics and line-conducted electromagnetic interference signals for their applicability in NILM. In a next step we developed an unsupervised learning algorithm which uses the most promising features to disaggregate the overall load profile. One property of our machine learning algorithm is the detection of also completely unknown devices. Another is the ability of real-time analysis of the meter data. Our results showed that higher frequency features can assist significantly in the task of load disaggregation. Harmonics for example can be especially beneficial by separating devices with a similar active power intake. Line-conducted disturbances - a subclass of electromagnetic interference signals - on the other hand can be useful to trace variable loads or to split devices of the same model. Still some more work has to be carried out in the field of overlapping distortions. Our algorithm evaluation showed some promising results for a privately recorded and publically available dataset. In addition industrial measurements were examined resulting in a high event detection performance. With this work we show the potential of combining low, mid and high frequency features. For future NILM algorithms the benefits of a high sampling rate should be considered and ideally be integrated into the smart meter rollout." @default.
- W2906543346 created "2019-01-01" @default.
- W2906543346 creator A5070866244 @default.
- W2906543346 date "2018-07-17" @default.
- W2906543346 modified "2023-09-26" @default.
- W2906543346 title "Non-Intrusive Load Monitoring (NILM): combining multiple distinct electrical features and unsupervised machine learning techniques" @default.
- W2906543346 hasPublicationYear "2018" @default.
- W2906543346 type Work @default.
- W2906543346 sameAs 2906543346 @default.
- W2906543346 citedByCount "0" @default.
- W2906543346 crossrefType "dissertation" @default.
- W2906543346 hasAuthorship W2906543346A5070866244 @default.
- W2906543346 hasConcept C105795698 @default.
- W2906543346 hasConcept C108755667 @default.
- W2906543346 hasConcept C119599485 @default.
- W2906543346 hasConcept C121332964 @default.
- W2906543346 hasConcept C127162648 @default.
- W2906543346 hasConcept C127413603 @default.
- W2906543346 hasConcept C154945302 @default.
- W2906543346 hasConcept C163258240 @default.
- W2906543346 hasConcept C165801399 @default.
- W2906543346 hasConcept C184892835 @default.
- W2906543346 hasConcept C186370098 @default.
- W2906543346 hasConcept C188414643 @default.
- W2906543346 hasConcept C202444582 @default.
- W2906543346 hasConcept C206658404 @default.
- W2906543346 hasConcept C24326235 @default.
- W2906543346 hasConcept C32022120 @default.
- W2906543346 hasConcept C33923547 @default.
- W2906543346 hasConcept C41008148 @default.
- W2906543346 hasConcept C62520636 @default.
- W2906543346 hasConcept C76155785 @default.
- W2906543346 hasConcept C79403827 @default.
- W2906543346 hasConcept C8038995 @default.
- W2906543346 hasConcept C9652623 @default.
- W2906543346 hasConceptScore W2906543346C105795698 @default.
- W2906543346 hasConceptScore W2906543346C108755667 @default.
- W2906543346 hasConceptScore W2906543346C119599485 @default.
- W2906543346 hasConceptScore W2906543346C121332964 @default.
- W2906543346 hasConceptScore W2906543346C127162648 @default.
- W2906543346 hasConceptScore W2906543346C127413603 @default.
- W2906543346 hasConceptScore W2906543346C154945302 @default.
- W2906543346 hasConceptScore W2906543346C163258240 @default.
- W2906543346 hasConceptScore W2906543346C165801399 @default.
- W2906543346 hasConceptScore W2906543346C184892835 @default.
- W2906543346 hasConceptScore W2906543346C186370098 @default.
- W2906543346 hasConceptScore W2906543346C188414643 @default.
- W2906543346 hasConceptScore W2906543346C202444582 @default.
- W2906543346 hasConceptScore W2906543346C206658404 @default.
- W2906543346 hasConceptScore W2906543346C24326235 @default.
- W2906543346 hasConceptScore W2906543346C32022120 @default.
- W2906543346 hasConceptScore W2906543346C33923547 @default.
- W2906543346 hasConceptScore W2906543346C41008148 @default.
- W2906543346 hasConceptScore W2906543346C62520636 @default.
- W2906543346 hasConceptScore W2906543346C76155785 @default.
- W2906543346 hasConceptScore W2906543346C79403827 @default.
- W2906543346 hasConceptScore W2906543346C8038995 @default.
- W2906543346 hasConceptScore W2906543346C9652623 @default.
- W2906543346 hasLocation W29065433461 @default.
- W2906543346 hasOpenAccess W2906543346 @default.
- W2906543346 hasPrimaryLocation W29065433461 @default.
- W2906543346 hasRelatedWork W1584533652 @default.
- W2906543346 hasRelatedWork W2093735991 @default.
- W2906543346 hasRelatedWork W2123910460 @default.
- W2906543346 hasRelatedWork W2773413335 @default.
- W2906543346 hasRelatedWork W2783004431 @default.
- W2906543346 hasRelatedWork W2898413529 @default.
- W2906543346 hasRelatedWork W2908201853 @default.
- W2906543346 hasRelatedWork W2909455612 @default.
- W2906543346 hasRelatedWork W3003799827 @default.
- W2906543346 hasRelatedWork W3011631033 @default.
- W2906543346 hasRelatedWork W3021984236 @default.
- W2906543346 hasRelatedWork W3036436050 @default.
- W2906543346 hasRelatedWork W3039860864 @default.
- W2906543346 hasRelatedWork W3040665150 @default.
- W2906543346 hasRelatedWork W3081851963 @default.
- W2906543346 hasRelatedWork W3083338893 @default.
- W2906543346 hasRelatedWork W3093392647 @default.
- W2906543346 hasRelatedWork W3107477497 @default.
- W2906543346 hasRelatedWork W3162502503 @default.
- W2906543346 hasRelatedWork W3192599963 @default.
- W2906543346 isParatext "false" @default.
- W2906543346 isRetracted "false" @default.
- W2906543346 magId "2906543346" @default.
- W2906543346 workType "dissertation" @default.