Matches in SemOpenAlex for { <https://semopenalex.org/work/W2906563102> ?p ?o ?g. }
- W2906563102 endingPage "11" @default.
- W2906563102 startingPage "11" @default.
- W2906563102 abstract "Synthetic amorphous silica (SAS) constitute a large group of industrial nanomaterials (NM). Based on their different production processes, SAS can be distinguished as precipitated, fumed, gel and colloidal. The biological activity of SAS, e.g., cytotoxicity or inflammatory potential in the lungs is low but has been shown to depend on the particle size, at least for colloidal silica. Therefore, the preparation of suspensions from highly aggregated or agglomerated SAS powder materials is critical. Here we analyzed the influence of ultrasonic dispersion energy on the biologic activity of SAS using NR8383 alveolar macrophage (AM) assay. Fully characterized SAS (7 precipitated, 3 fumed, 3 gel, and 1 colloidal) were dispersed in H2O by stirring and filtering through a 5 µm filter. Aqueous suspensions were sonicated with low or high ultrasonic dispersion (USD) energy of 18 or 270 kJ/mL, respectively. A dose range of 11.25–90 µg/mL was administered to the AM under protein-free conditions to detect particle-cell interactions without the attenuating effect of proteins that typically occur in vivo. The release of lactate dehydrogenase (LDH), glucuronidase (GLU), and tumor necrosis factor α (TNF) were measured after 16 h. Hydrogen peroxide (H2O2) production was assayed after 90 min. The overall pattern of the in vitro response to SAS (12/14) was clearly dose-dependent, except for two SAS which showed very low bioactivity. High USD energy gradually decreased the particle size of precipitated, fumed, and gel SAS whereas the low adverse effect concentrations (LOECs) remained unchanged. Nevertheless, the comparison of dose-response curves revealed slight, but uniform shifts in EC50 values (LDH, and partially GLU) for precipitated SAS (6/7), gel SAS (2/3), and fumed SAS (3/3). Release of TNF changed inconsistently with higher ultrasonic dispersion (USD) energy whereas the induction of H2O2 was diminished in all cases. Electron microscopy and energy dispersive X-ray analysis showed an uptake of SAS into endosomes, lysosomes, endoplasmic reticulum, and different types of phagosomes. The possible effects of different uptake routes are discussed. The study shows that the effect of increased USD energy on the in vitro bioactivity of SAS is surprisingly small. As the in vitro response of AM to different SAS is highly uniform, the production process per se is of minor relevance for toxicity." @default.
- W2906563102 created "2019-01-01" @default.
- W2906563102 creator A5000342392 @default.
- W2906563102 creator A5010204521 @default.
- W2906563102 creator A5024542005 @default.
- W2906563102 creator A5044595305 @default.
- W2906563102 creator A5051079117 @default.
- W2906563102 creator A5052494856 @default.
- W2906563102 creator A5060846887 @default.
- W2906563102 creator A5073426377 @default.
- W2906563102 creator A5075681385 @default.
- W2906563102 date "2018-12-22" @default.
- W2906563102 modified "2023-10-10" @default.
- W2906563102 title "Effects of Ultrasonic Dispersion Energy on the Preparation of Amorphous SiO2 Nanomaterials for In Vitro Toxicity Testing" @default.
- W2906563102 cites W1949707070 @default.
- W2906563102 cites W1964651992 @default.
- W2906563102 cites W1965351120 @default.
- W2906563102 cites W1970576528 @default.
- W2906563102 cites W1978663053 @default.
- W2906563102 cites W1979425744 @default.
- W2906563102 cites W1983238489 @default.
- W2906563102 cites W1987854890 @default.
- W2906563102 cites W1988851509 @default.
- W2906563102 cites W1995258468 @default.
- W2906563102 cites W1995371407 @default.
- W2906563102 cites W1996174713 @default.
- W2906563102 cites W1998015586 @default.
- W2906563102 cites W2003241126 @default.
- W2906563102 cites W2011254969 @default.
- W2906563102 cites W2022955853 @default.
- W2906563102 cites W2034125054 @default.
- W2906563102 cites W2034476799 @default.
- W2906563102 cites W2038109617 @default.
- W2906563102 cites W2047455844 @default.
- W2906563102 cites W2051127799 @default.
- W2906563102 cites W2057529331 @default.
- W2906563102 cites W2057637677 @default.
- W2906563102 cites W2057760381 @default.
- W2906563102 cites W2075118258 @default.
- W2906563102 cites W2082023233 @default.
- W2906563102 cites W2086510163 @default.
- W2906563102 cites W2088789315 @default.
- W2906563102 cites W2098100151 @default.
- W2906563102 cites W2115993724 @default.
- W2906563102 cites W2118050759 @default.
- W2906563102 cites W2120579640 @default.
- W2906563102 cites W2125179619 @default.
- W2906563102 cites W2129439030 @default.
- W2906563102 cites W2142338801 @default.
- W2906563102 cites W2152517410 @default.
- W2906563102 cites W2153584068 @default.
- W2906563102 cites W2155991778 @default.
- W2906563102 cites W2157852238 @default.
- W2906563102 cites W2159502819 @default.
- W2906563102 cites W2290248210 @default.
- W2906563102 cites W2292175732 @default.
- W2906563102 cites W2314550360 @default.
- W2906563102 cites W2339450177 @default.
- W2906563102 cites W2351208027 @default.
- W2906563102 cites W2415946502 @default.
- W2906563102 cites W2418293015 @default.
- W2906563102 cites W2495089965 @default.
- W2906563102 cites W2523418220 @default.
- W2906563102 cites W2544360667 @default.
- W2906563102 cites W2551969462 @default.
- W2906563102 cites W2584188058 @default.
- W2906563102 cites W2588131192 @default.
- W2906563102 cites W2615404167 @default.
- W2906563102 cites W2621072658 @default.
- W2906563102 cites W2621290312 @default.
- W2906563102 cites W2724927220 @default.
- W2906563102 cites W2729212058 @default.
- W2906563102 cites W2745590142 @default.
- W2906563102 cites W2792449792 @default.
- W2906563102 cites W2803437590 @default.
- W2906563102 cites W2809054034 @default.
- W2906563102 cites W2810467982 @default.
- W2906563102 cites W2884571839 @default.
- W2906563102 doi "https://doi.org/10.3390/nano9010011" @default.
- W2906563102 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6359325" @default.
- W2906563102 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30583541" @default.
- W2906563102 hasPublicationYear "2018" @default.
- W2906563102 type Work @default.
- W2906563102 sameAs 2906563102 @default.
- W2906563102 citedByCount "18" @default.
- W2906563102 countsByYear W29065631022019 @default.
- W2906563102 countsByYear W29065631022020 @default.
- W2906563102 countsByYear W29065631022021 @default.
- W2906563102 countsByYear W29065631022022 @default.
- W2906563102 crossrefType "journal-article" @default.
- W2906563102 hasAuthorship W2906563102A5000342392 @default.
- W2906563102 hasAuthorship W2906563102A5010204521 @default.
- W2906563102 hasAuthorship W2906563102A5024542005 @default.
- W2906563102 hasAuthorship W2906563102A5044595305 @default.
- W2906563102 hasAuthorship W2906563102A5051079117 @default.
- W2906563102 hasAuthorship W2906563102A5052494856 @default.
- W2906563102 hasAuthorship W2906563102A5060846887 @default.
- W2906563102 hasAuthorship W2906563102A5073426377 @default.