Matches in SemOpenAlex for { <https://semopenalex.org/work/W2906667314> ?p ?o ?g. }
- W2906667314 endingPage "106" @default.
- W2906667314 startingPage "95" @default.
- W2906667314 abstract "Pancreatic cancer (PC) induced cachexia is a complex metabolic syndrome associated with significantly increased morbidity and mortality and reduced quality of life. The pathophysiology of cachexia is complex and poorly understood. Many molecular signaling pathways are involved in PC and cachexia. Though our understanding of cancer cachexia is growing, therapeutic options remain limited. Thus, further discovery and investigation of the molecular signaling pathways involved in the pathophysiology of cachexia can be applied to development of targeted therapies. This review focuses on three main pathophysiologic processes implicated in the development and progression of cachexia in PC, as well as their utility in the discovery of novel targeted therapies. Skeletal muscle wasting is the most prominent pathophysiologic anomaly in cachectic patients and driven by multiple regulatory pathways. Several known molecular pathways that mediate muscle wasting and cachexia include transforming growth factor-beta (TGF-β), myostatin and activin, IGF-1/PI3K/AKT, and JAK-STAT signaling. TGF-β antagonism in cachectic mice reduces skeletal muscle catabolism and weight loss, while improving overall survival. Myostatin/activin inhibition has a great therapeutic potential since it plays an essential role in skeletal muscle regulation. Overexpression of insulin-like growth factor binding protein-3 (IGFBP-3) leads to increased ubiquitination associated proteolysis, inhibition of myogenesis, and decreased muscle mass in PC induced cachexia. IGFBP-3 antagonism alleviates muscle cell wasting. Another component of cachexia is profound systemic inflammation driven by pro-cachectic cytokines such as interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and interferon gamma (INF-γ). IL-6 antagonism has been shown to reduce inflammation, reduce skeletal muscle loss, and ameliorate cachexia. While TNF-α inhibitors are clinically available, blocking TNF-α signaling is not effective in the treatment of cancer cachexia. Blocking the synthesis or action of acute phase reactants and cytokines is a feasible therapeutic strategy, but no anti-cytokine therapies are currently approved for use in PC. Metabolic alterations such as increased energy expenditure and gluconeogenesis, insulin resistance, fat tissue browning, excessive oxidative stress, and proteolysis with amino acid mobilization support tumor growth and the development of cachexia. Current innovative nutritional strategies for cachexia management include ketogenic diet, utilization of natural compounds such as silibinin, and supplementation with ω3-polyunsaturated fatty acids. Elevated ketone bodies exhibit an anticancer and anticachectic effect. Silibinin has been shown to inhibit growth of PC cells, induce metabolic alterations, and reduce myofiber degradation. Consumption of ω3-polyunsaturated fatty acids has been shown to significantly decrease resting energy expenditure and regulate metabolic dysfunction." @default.
- W2906667314 created "2019-01-01" @default.
- W2906667314 creator A5037890067 @default.
- W2906667314 creator A5052737510 @default.
- W2906667314 creator A5069723164 @default.
- W2906667314 date "2018-12-27" @default.
- W2906667314 modified "2023-10-14" @default.
- W2906667314 title "Molecular therapeutic strategies targeting pancreatic cancer induced cachexia" @default.
- W2906667314 cites W1490028331 @default.
- W2906667314 cites W1505138796 @default.
- W2906667314 cites W1530473805 @default.
- W2906667314 cites W1592070845 @default.
- W2906667314 cites W1687788096 @default.
- W2906667314 cites W1842215792 @default.
- W2906667314 cites W1851711468 @default.
- W2906667314 cites W1870686894 @default.
- W2906667314 cites W1929299477 @default.
- W2906667314 cites W1964704923 @default.
- W2906667314 cites W1965690008 @default.
- W2906667314 cites W1966350956 @default.
- W2906667314 cites W1969583687 @default.
- W2906667314 cites W1975230416 @default.
- W2906667314 cites W1975913194 @default.
- W2906667314 cites W1980868512 @default.
- W2906667314 cites W1982319580 @default.
- W2906667314 cites W1983107101 @default.
- W2906667314 cites W1983660080 @default.
- W2906667314 cites W1984655291 @default.
- W2906667314 cites W1987892987 @default.
- W2906667314 cites W1990461493 @default.
- W2906667314 cites W2007617653 @default.
- W2906667314 cites W2016341941 @default.
- W2906667314 cites W2017536128 @default.
- W2906667314 cites W2027515943 @default.
- W2906667314 cites W2028043263 @default.
- W2906667314 cites W2031354315 @default.
- W2906667314 cites W2055933911 @default.
- W2906667314 cites W2057518657 @default.
- W2906667314 cites W2059726407 @default.
- W2906667314 cites W2063540659 @default.
- W2906667314 cites W2074063262 @default.
- W2906667314 cites W2075737026 @default.
- W2906667314 cites W2077528068 @default.
- W2906667314 cites W2078514884 @default.
- W2906667314 cites W2081559552 @default.
- W2906667314 cites W2116819815 @default.
- W2906667314 cites W2132899214 @default.
- W2906667314 cites W2138512906 @default.
- W2906667314 cites W2146147581 @default.
- W2906667314 cites W2155631120 @default.
- W2906667314 cites W2181289693 @default.
- W2906667314 cites W2236982847 @default.
- W2906667314 cites W2264588403 @default.
- W2906667314 cites W2278001291 @default.
- W2906667314 cites W2279428213 @default.
- W2906667314 cites W2290301118 @default.
- W2906667314 cites W2299814449 @default.
- W2906667314 cites W2463253051 @default.
- W2906667314 cites W2470158267 @default.
- W2906667314 cites W2517298737 @default.
- W2906667314 cites W2552550451 @default.
- W2906667314 cites W2553667461 @default.
- W2906667314 cites W2557454602 @default.
- W2906667314 cites W2557677229 @default.
- W2906667314 cites W2560616440 @default.
- W2906667314 cites W2582056630 @default.
- W2906667314 cites W2586327969 @default.
- W2906667314 cites W2586424458 @default.
- W2906667314 cites W2594758945 @default.
- W2906667314 cites W2602652174 @default.
- W2906667314 cites W2603302693 @default.
- W2906667314 cites W2608317789 @default.
- W2906667314 cites W2621124586 @default.
- W2906667314 cites W2624910490 @default.
- W2906667314 cites W2626610172 @default.
- W2906667314 cites W2626721982 @default.
- W2906667314 cites W2627003412 @default.
- W2906667314 cites W2741695057 @default.
- W2906667314 cites W2743319232 @default.
- W2906667314 cites W2774323119 @default.
- W2906667314 cites W2784185112 @default.
- W2906667314 cites W2791308801 @default.
- W2906667314 cites W2792595617 @default.
- W2906667314 cites W2792689617 @default.
- W2906667314 cites W2794705882 @default.
- W2906667314 cites W2796314769 @default.
- W2906667314 cites W2800888293 @default.
- W2906667314 cites W2802706983 @default.
- W2906667314 cites W2803019274 @default.
- W2906667314 cites W2886381596 @default.
- W2906667314 cites W4229972630 @default.
- W2906667314 cites W4873815 @default.
- W2906667314 cites W57379865 @default.
- W2906667314 cites W863371425 @default.
- W2906667314 doi "https://doi.org/10.4240/wjgs.v10.i9.95" @default.
- W2906667314 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6314860" @default.
- W2906667314 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30622678" @default.
- W2906667314 hasPublicationYear "2018" @default.