Matches in SemOpenAlex for { <https://semopenalex.org/work/W2906680807> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W2906680807 endingPage "60" @default.
- W2906680807 startingPage "49" @default.
- W2906680807 abstract "The electroencephalograph (EEG) is a powerful tool, involving multiple electrodes placed on the scalp, with the intention of measuring brain activity through the scalp. One significant application for EEG is to analyze the mental state of a subject. One of the challenges involved in using the EEG for identifying mental state in practical settings is ocular artifacts e.g. eye blinking. Eye blinks cause high amplitude noise in electroencephalograms (EEGs), the noise from these blinks can cause interference in several very important frequency bands and confuse predictive modeling e.g. introduce false positives. Prior works have employed independent component analysis (ICA) to decompose the noisy EEG signals into constituting sources and identify the eye blink sources. However, ICA requires off-line signal processing and is not suitable for online applications. More recently, time domain autoregressive features were used to model eye blink related segments in the recorded EEG data. While the autoregressive method showed high identification accuracy in isolated short trials, the goal of this work is to create a more advanced system capable of identifying and filtering blink noise in continuous trials during long and complex tasks. The proposed method detailed in this paper conducts automatic detection of eye blink noise using dynamic time warping (DTW) score clustering during wearable EEG-based cognitive workload assessment tests. The proposed eye blink detection system only uses EEG data for training and identification and does not require electrooculogram (EOG) data, which is particularly important for wearable systems. Our experimental results demonstrated the effectiveness of the proposed blink detection methodology by achieving 96.42% average accuracy of blink detection in the recorded EEG dynamics during a continuous workload assessment task." @default.
- W2906680807 created "2019-01-11" @default.
- W2906680807 creator A5015005773 @default.
- W2906680807 creator A5051537677 @default.
- W2906680807 creator A5066091279 @default.
- W2906680807 date "2018-12-30" @default.
- W2906680807 modified "2023-09-26" @default.
- W2906680807 title "Automatic EEG Blink Detection Using Dynamic Time Warping Score Clustering" @default.
- W2906680807 cites W1981650367 @default.
- W2906680807 cites W1991952464 @default.
- W2906680807 cites W2025157091 @default.
- W2906680807 cites W2056925087 @default.
- W2906680807 cites W2100930563 @default.
- W2906680807 cites W2113412631 @default.
- W2906680807 cites W2145290104 @default.
- W2906680807 cites W2150665176 @default.
- W2906680807 cites W2157523099 @default.
- W2906680807 cites W2161160262 @default.
- W2906680807 cites W2167298530 @default.
- W2906680807 cites W2179618027 @default.
- W2906680807 cites W2549392078 @default.
- W2906680807 cites W2559475161 @default.
- W2906680807 cites W2772881416 @default.
- W2906680807 doi "https://doi.org/10.1007/978-3-030-02819-0_5" @default.
- W2906680807 hasPublicationYear "2018" @default.
- W2906680807 type Work @default.
- W2906680807 sameAs 2906680807 @default.
- W2906680807 citedByCount "6" @default.
- W2906680807 countsByYear W29066808072019 @default.
- W2906680807 countsByYear W29066808072020 @default.
- W2906680807 countsByYear W29066808072023 @default.
- W2906680807 crossrefType "book-chapter" @default.
- W2906680807 hasAuthorship W2906680807A5015005773 @default.
- W2906680807 hasAuthorship W2906680807A5051537677 @default.
- W2906680807 hasAuthorship W2906680807A5066091279 @default.
- W2906680807 hasConcept C153180895 @default.
- W2906680807 hasConcept C154945302 @default.
- W2906680807 hasConcept C28490314 @default.
- W2906680807 hasConcept C41008148 @default.
- W2906680807 hasConcept C73555534 @default.
- W2906680807 hasConcept C88516994 @default.
- W2906680807 hasConceptScore W2906680807C153180895 @default.
- W2906680807 hasConceptScore W2906680807C154945302 @default.
- W2906680807 hasConceptScore W2906680807C28490314 @default.
- W2906680807 hasConceptScore W2906680807C41008148 @default.
- W2906680807 hasConceptScore W2906680807C73555534 @default.
- W2906680807 hasConceptScore W2906680807C88516994 @default.
- W2906680807 hasLocation W29066808071 @default.
- W2906680807 hasOpenAccess W2906680807 @default.
- W2906680807 hasPrimaryLocation W29066808071 @default.
- W2906680807 hasRelatedWork W1999627569 @default.
- W2906680807 hasRelatedWork W2080761477 @default.
- W2906680807 hasRelatedWork W2160799648 @default.
- W2906680807 hasRelatedWork W2185797214 @default.
- W2906680807 hasRelatedWork W2380998760 @default.
- W2906680807 hasRelatedWork W2382147347 @default.
- W2906680807 hasRelatedWork W2403744328 @default.
- W2906680807 hasRelatedWork W2513005634 @default.
- W2906680807 hasRelatedWork W2565869215 @default.
- W2906680807 hasRelatedWork W2906718907 @default.
- W2906680807 isParatext "false" @default.
- W2906680807 isRetracted "false" @default.
- W2906680807 magId "2906680807" @default.
- W2906680807 workType "book-chapter" @default.