Matches in SemOpenAlex for { <https://semopenalex.org/work/W2906688429> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W2906688429 abstract "This thesis brings together elements of differential geometry, machine learning, and pathwise stochastic analysis to answer problems in mathematical finance. The overarching theme is the development of new stochastic machine learning algorithms which incorporate arbitrage-free and geometric features into their estimation procedures in order to give more accurate forecasts and preserve the geometric and financial structure in the data.This thesis is divided into three part. The first part introduces the non-Euclidean upgrading (NEU) meta-algorithm which builds the universal reconfiguration and universal approximation properties into any objective learning algorithm. These properties state that a procedure can reproduce any dataset exactly and approximate any function to arbitrary precision, respectively. This is done through an unsupervised learning procedure which identifies a geometry optimizing the relationship between a dataset and the objective learning algorithm used to explain it. The effectiveness of this procedure is supported both theoretically and numerically. The numerical implementations find that NEU-ordinary least squares outperforms leading regularized regression algorithms and that NEU-PCA explains more variance with one NEU-principal component than PCA does with four classical principal components.The second part of the thesis introduces a computationally efficient characterization of intrinsic conditional expectation for Cartan-Hadamard manifolds. This alternative characterization provides an explicit way of computing non-Euclidean conditional expectation by using geometric transformations of specific Euclidean conditional expectations. This reduces many non-convex intrinsic estimation problems to transformations of well studied Euclidean conditional expectations. As a consequence, computationally tractable non-Euclidean filtering equations are derived and used to successfully forecast efficient portfolios by exploiting their geometry.The third and final part of this thesis introduces a flexible modeling framework and a stochastic learning methodology for incorporating arbitrage-free features into many asset price models. The procedure works by minimally deforming the structure of a model until the objective measure acts as a martingale measure for that model. Reformulations of classical no-arbitrage results such as NFLVR, the minimal martingale measure, and the arbitrage-free Nelson-Siegel correction of the Nelson-Siegel model are all derived as solutions to specific arbitrage-free regularization problems. The flexibility and generality of this framework allows classical no-arbitrage pricing theory to be extended to models that admit arbitrage opportunities but are deformable into arbitrage-free models. Numerical implications are investigated in each of the three parts making up this thesis." @default.
- W2906688429 created "2019-01-11" @default.
- W2906688429 creator A5036113771 @default.
- W2906688429 date "2018-07-17" @default.
- W2906688429 modified "2023-09-23" @default.
- W2906688429 title "Arbitrage-free regularization, geometric learning, and non-Euclidean filtering in finance" @default.
- W2906688429 hasPublicationYear "2018" @default.
- W2906688429 type Work @default.
- W2906688429 sameAs 2906688429 @default.
- W2906688429 citedByCount "0" @default.
- W2906688429 crossrefType "dissertation" @default.
- W2906688429 hasAuthorship W2906688429A5036113771 @default.
- W2906688429 hasConcept C11413529 @default.
- W2906688429 hasConcept C119857082 @default.
- W2906688429 hasConcept C126255220 @default.
- W2906688429 hasConcept C129782007 @default.
- W2906688429 hasConcept C154945302 @default.
- W2906688429 hasConcept C2524010 @default.
- W2906688429 hasConcept C28826006 @default.
- W2906688429 hasConcept C33923547 @default.
- W2906688429 hasConcept C41008148 @default.
- W2906688429 hasConceptScore W2906688429C11413529 @default.
- W2906688429 hasConceptScore W2906688429C119857082 @default.
- W2906688429 hasConceptScore W2906688429C126255220 @default.
- W2906688429 hasConceptScore W2906688429C129782007 @default.
- W2906688429 hasConceptScore W2906688429C154945302 @default.
- W2906688429 hasConceptScore W2906688429C2524010 @default.
- W2906688429 hasConceptScore W2906688429C28826006 @default.
- W2906688429 hasConceptScore W2906688429C33923547 @default.
- W2906688429 hasConceptScore W2906688429C41008148 @default.
- W2906688429 hasLocation W29066884291 @default.
- W2906688429 hasOpenAccess W2906688429 @default.
- W2906688429 hasPrimaryLocation W29066884291 @default.
- W2906688429 hasRelatedWork W118607236 @default.
- W2906688429 hasRelatedWork W1525329859 @default.
- W2906688429 hasRelatedWork W2089195188 @default.
- W2906688429 hasRelatedWork W2105180921 @default.
- W2906688429 hasRelatedWork W2150312869 @default.
- W2906688429 hasRelatedWork W2209633986 @default.
- W2906688429 hasRelatedWork W2611385574 @default.
- W2906688429 hasRelatedWork W2765263785 @default.
- W2906688429 hasRelatedWork W2912255705 @default.
- W2906688429 hasRelatedWork W2912554888 @default.
- W2906688429 hasRelatedWork W2950554674 @default.
- W2906688429 hasRelatedWork W2950845867 @default.
- W2906688429 hasRelatedWork W2952554368 @default.
- W2906688429 hasRelatedWork W2953210631 @default.
- W2906688429 hasRelatedWork W3037473509 @default.
- W2906688429 hasRelatedWork W3042009628 @default.
- W2906688429 hasRelatedWork W3080690820 @default.
- W2906688429 hasRelatedWork W3119890223 @default.
- W2906688429 hasRelatedWork W3195233187 @default.
- W2906688429 hasRelatedWork W78182575 @default.
- W2906688429 isParatext "false" @default.
- W2906688429 isRetracted "false" @default.
- W2906688429 magId "2906688429" @default.
- W2906688429 workType "dissertation" @default.