Matches in SemOpenAlex for { <https://semopenalex.org/work/W2906788812> ?p ?o ?g. }
- W2906788812 endingPage "203" @default.
- W2906788812 startingPage "185" @default.
- W2906788812 abstract "Point clouds obtained with 3D scanners or by image-based reconstruction techniques are often corrupted with significant amount of noise and outliers. Traditional methods for point cloud denoising largely rely on local surface fitting (e.g. jets or MLS surfaces), local or non-local averaging or on statistical assumptions about the underlying noise model. In contrast, we develop a simple data-driven method for removing outliers and reducing noise in unordered point clouds. We base our approach on a deep learning architecture adapted from PCPNet, which was recently proposed for estimating local 3D shape properties in point clouds. Our method first classifies and discards outlier samples, and then estimates correction vectors that project noisy points onto the original clean surfaces. The approach is efficient and robust to varying amounts of noise and outliers, while being able to handle large densely sampled point clouds. In our extensive evaluation, both on synthetic and real data, we show an increased robustness to strong noise levels compared to various state-of-the-art methods, enabling accurate surface reconstruction from extremely noisy real data obtained by range scans. Finally, the simplicity and universality of our approach makes it very easy to integrate in any existing geometry processing pipeline. Both the code and pre-trained networks can be found on the project page (https://github.com/mrakotosaon/pointcleannet)." @default.
- W2906788812 created "2019-01-11" @default.
- W2906788812 creator A5028523019 @default.
- W2906788812 creator A5035017722 @default.
- W2906788812 creator A5058170430 @default.
- W2906788812 creator A5072368950 @default.
- W2906788812 creator A5082849657 @default.
- W2906788812 date "2019-06-25" @default.
- W2906788812 modified "2023-10-03" @default.
- W2906788812 title "<scp>PointCleanNet</scp> : Learning to Denoise and Remove Outliers from Dense Point Clouds" @default.
- W2906788812 cites W156975732 @default.
- W2906788812 cites W1987113397 @default.
- W2906788812 cites W1992642990 @default.
- W2906788812 cites W1995050439 @default.
- W2906788812 cites W1997147589 @default.
- W2906788812 cites W2004402003 @default.
- W2906788812 cites W2010473040 @default.
- W2906788812 cites W2037133587 @default.
- W2906788812 cites W2048430744 @default.
- W2906788812 cites W2058524213 @default.
- W2906788812 cites W2097073572 @default.
- W2906788812 cites W2101712289 @default.
- W2906788812 cites W2106482611 @default.
- W2906788812 cites W2121886361 @default.
- W2906788812 cites W2137531922 @default.
- W2906788812 cites W2148952796 @default.
- W2906788812 cites W2153663612 @default.
- W2906788812 cites W2162450071 @default.
- W2906788812 cites W2169611956 @default.
- W2906788812 cites W2366389387 @default.
- W2906788812 cites W2508457857 @default.
- W2906788812 cites W2546714150 @default.
- W2906788812 cites W2551040565 @default.
- W2906788812 cites W2558748708 @default.
- W2906788812 cites W2560293005 @default.
- W2906788812 cites W2560722161 @default.
- W2906788812 cites W2566809385 @default.
- W2906788812 cites W2570901095 @default.
- W2906788812 cites W2574952845 @default.
- W2906788812 cites W2617121149 @default.
- W2906788812 cites W2765223700 @default.
- W2906788812 cites W2766448241 @default.
- W2906788812 cites W2797301041 @default.
- W2906788812 cites W2805499196 @default.
- W2906788812 cites W2805729703 @default.
- W2906788812 cites W2963680153 @default.
- W2906788812 cites W3098903961 @default.
- W2906788812 cites W4206165574 @default.
- W2906788812 cites W4239954780 @default.
- W2906788812 cites W951004695 @default.
- W2906788812 doi "https://doi.org/10.1111/cgf.13753" @default.
- W2906788812 hasPublicationYear "2019" @default.
- W2906788812 type Work @default.
- W2906788812 sameAs 2906788812 @default.
- W2906788812 citedByCount "128" @default.
- W2906788812 countsByYear W29067888122018 @default.
- W2906788812 countsByYear W29067888122019 @default.
- W2906788812 countsByYear W29067888122020 @default.
- W2906788812 countsByYear W29067888122021 @default.
- W2906788812 countsByYear W29067888122022 @default.
- W2906788812 countsByYear W29067888122023 @default.
- W2906788812 crossrefType "journal-article" @default.
- W2906788812 hasAuthorship W2906788812A5028523019 @default.
- W2906788812 hasAuthorship W2906788812A5035017722 @default.
- W2906788812 hasAuthorship W2906788812A5058170430 @default.
- W2906788812 hasAuthorship W2906788812A5072368950 @default.
- W2906788812 hasAuthorship W2906788812A5082849657 @default.
- W2906788812 hasBestOaLocation W29067888122 @default.
- W2906788812 hasConcept C104317684 @default.
- W2906788812 hasConcept C115961682 @default.
- W2906788812 hasConcept C131979681 @default.
- W2906788812 hasConcept C153180895 @default.
- W2906788812 hasConcept C154945302 @default.
- W2906788812 hasConcept C163294075 @default.
- W2906788812 hasConcept C185592680 @default.
- W2906788812 hasConcept C31972630 @default.
- W2906788812 hasConcept C41008148 @default.
- W2906788812 hasConcept C55493867 @default.
- W2906788812 hasConcept C63479239 @default.
- W2906788812 hasConcept C79337645 @default.
- W2906788812 hasConcept C99498987 @default.
- W2906788812 hasConceptScore W2906788812C104317684 @default.
- W2906788812 hasConceptScore W2906788812C115961682 @default.
- W2906788812 hasConceptScore W2906788812C131979681 @default.
- W2906788812 hasConceptScore W2906788812C153180895 @default.
- W2906788812 hasConceptScore W2906788812C154945302 @default.
- W2906788812 hasConceptScore W2906788812C163294075 @default.
- W2906788812 hasConceptScore W2906788812C185592680 @default.
- W2906788812 hasConceptScore W2906788812C31972630 @default.
- W2906788812 hasConceptScore W2906788812C41008148 @default.
- W2906788812 hasConceptScore W2906788812C55493867 @default.
- W2906788812 hasConceptScore W2906788812C63479239 @default.
- W2906788812 hasConceptScore W2906788812C79337645 @default.
- W2906788812 hasConceptScore W2906788812C99498987 @default.
- W2906788812 hasFunder F4320322320 @default.
- W2906788812 hasIssue "1" @default.
- W2906788812 hasLocation W29067888121 @default.
- W2906788812 hasLocation W29067888122 @default.