Matches in SemOpenAlex for { <https://semopenalex.org/work/W2906794889> ?p ?o ?g. }
- W2906794889 endingPage "65" @default.
- W2906794889 startingPage "44" @default.
- W2906794889 abstract "Abstract Geologic CO2 sequestration (GCS) has received high-level attention from the global scientific community as a response to climate change due to higher concentrations of CO2 in the atmosphere. However, GCS in saline aquifers poses certain risks including CO2/brine leakage through wells or non-sealing faults into groundwater or to the earth’s surface. Understanding crucial reservoir parameters and other geologic features affecting the likelihood of these leakage occurrences will aid the decision-making process regarding GCS operations. In this study, we develop a science-based methodology for quantifying risk profiles at geologic CO2 sequestration sites as part of US DOE’s National Risk Assessment Partnership (NRAP). We apply NRAP tools to a field scale project in a fractured saline aquifer located at Kevin Dome, Montana, which is part of DOE’s Big Sky Carbon Sequestration Partnership project. Risks associated with GCS injection and monitoring are difficult to quantify due to a dearth of data and uncertainties. One solution is running a large number of numerical simulations of the primary CO2 injection reservoir, shallow reservoirs/aquifers, faults, and wells to address leakage risks and uncertainties. However, a full-physics simulation is not computationally feasible because the model is too large and requires fine spatial and temporal discretization to accurately reproduce complex multiphase flow processes. We employ the NRAP Integrated Assessment Model (NRAP-IAM), a hybrid system model developed by the US-DOE for use in performance and quantitative risk assessment of CO2 sequestration. The IAM model requires reduced order models (ROMs) developed from numerical reservoir simulations of a primary CO2 injection reservoir. The ROMs are linked with discrete components of the NRAP-IAM including shallow reservoirs/aquifers and the atmosphere through potential leakage pathways. A powerful stochastic framework allows NRAP-IAM to be used to explore complex interactions among a large number of uncertain variables and to help evaluate the likely performance of potential sequestration sites. Using the NRAP-IAM, we find that the potential amount of CO2 leakage is most sensitive to values of permeability, end-point CO2 relative permeability, hysteresis of CO2 relative permeability, capillary pressure, and permeability of confining rocks. In addition to demonstrating the application of the NRAP risk assessment tools, this work shows that GCS in the Kevin Dome has a higher probability of encountering injectivity limitations during injection of CO2 into the Middle Duperow formation than previous studies have calculated. Finally, we estimate very low risk of CO2 leakage to the atmosphere unless the quality of the legacy well completions is extremely poor." @default.
- W2906794889 created "2019-01-11" @default.
- W2906794889 creator A5013039817 @default.
- W2906794889 creator A5013647963 @default.
- W2906794889 creator A5015134184 @default.
- W2906794889 creator A5016491969 @default.
- W2906794889 creator A5024554133 @default.
- W2906794889 creator A5024910535 @default.
- W2906794889 creator A5031262963 @default.
- W2906794889 creator A5035111937 @default.
- W2906794889 creator A5037716838 @default.
- W2906794889 creator A5055943568 @default.
- W2906794889 creator A5073480418 @default.
- W2906794889 creator A5086027350 @default.
- W2906794889 date "2019-02-01" @default.
- W2906794889 modified "2023-10-02" @default.
- W2906794889 title "Potential CO2 and brine leakage through wellbore pathways for geologic CO2 sequestration using the National Risk Assessment Partnership tools: Application to the Big Sky Regional Partnership" @default.
- W2906794889 cites W1604224450 @default.
- W2906794889 cites W1963596761 @default.
- W2906794889 cites W1965810037 @default.
- W2906794889 cites W1977535371 @default.
- W2906794889 cites W1977929385 @default.
- W2906794889 cites W1978759895 @default.
- W2906794889 cites W1985466993 @default.
- W2906794889 cites W1992623294 @default.
- W2906794889 cites W2012579131 @default.
- W2906794889 cites W2018621062 @default.
- W2906794889 cites W2020828556 @default.
- W2906794889 cites W2024761628 @default.
- W2906794889 cites W2025740130 @default.
- W2906794889 cites W2026403523 @default.
- W2906794889 cites W2034046879 @default.
- W2906794889 cites W2036130670 @default.
- W2906794889 cites W2041949843 @default.
- W2906794889 cites W2046384265 @default.
- W2906794889 cites W2049557999 @default.
- W2906794889 cites W2050233799 @default.
- W2906794889 cites W2055591121 @default.
- W2906794889 cites W2057462553 @default.
- W2906794889 cites W2058738180 @default.
- W2906794889 cites W2064225687 @default.
- W2906794889 cites W2064935929 @default.
- W2906794889 cites W2070114260 @default.
- W2906794889 cites W2072185607 @default.
- W2906794889 cites W2073532908 @default.
- W2906794889 cites W2077129055 @default.
- W2906794889 cites W2089027593 @default.
- W2906794889 cites W2091826113 @default.
- W2906794889 cites W2092876138 @default.
- W2906794889 cites W2092921756 @default.
- W2906794889 cites W2110695922 @default.
- W2906794889 cites W2115040622 @default.
- W2906794889 cites W2117804331 @default.
- W2906794889 cites W2125055417 @default.
- W2906794889 cites W2130606391 @default.
- W2906794889 cites W2138361385 @default.
- W2906794889 cites W2142351601 @default.
- W2906794889 cites W2143741856 @default.
- W2906794889 cites W2162604832 @default.
- W2906794889 cites W2166451257 @default.
- W2906794889 cites W2198750495 @default.
- W2906794889 cites W2205745736 @default.
- W2906794889 cites W2303615139 @default.
- W2906794889 cites W2303715525 @default.
- W2906794889 cites W2323742400 @default.
- W2906794889 cites W2325348676 @default.
- W2906794889 cites W2494888544 @default.
- W2906794889 cites W2495733320 @default.
- W2906794889 cites W2571404626 @default.
- W2906794889 cites W2613093949 @default.
- W2906794889 cites W2735930422 @default.
- W2906794889 cites W2747793629 @default.
- W2906794889 cites W4236222228 @default.
- W2906794889 cites W4239748937 @default.
- W2906794889 doi "https://doi.org/10.1016/j.ijggc.2018.12.002" @default.
- W2906794889 hasPublicationYear "2019" @default.
- W2906794889 type Work @default.
- W2906794889 sameAs 2906794889 @default.
- W2906794889 citedByCount "30" @default.
- W2906794889 countsByYear W29067948892019 @default.
- W2906794889 countsByYear W29067948892020 @default.
- W2906794889 countsByYear W29067948892021 @default.
- W2906794889 countsByYear W29067948892022 @default.
- W2906794889 countsByYear W29067948892023 @default.
- W2906794889 crossrefType "journal-article" @default.
- W2906794889 hasAuthorship W2906794889A5013039817 @default.
- W2906794889 hasAuthorship W2906794889A5013647963 @default.
- W2906794889 hasAuthorship W2906794889A5015134184 @default.
- W2906794889 hasAuthorship W2906794889A5016491969 @default.
- W2906794889 hasAuthorship W2906794889A5024554133 @default.
- W2906794889 hasAuthorship W2906794889A5024910535 @default.
- W2906794889 hasAuthorship W2906794889A5031262963 @default.
- W2906794889 hasAuthorship W2906794889A5035111937 @default.
- W2906794889 hasAuthorship W2906794889A5037716838 @default.
- W2906794889 hasAuthorship W2906794889A5055943568 @default.
- W2906794889 hasAuthorship W2906794889A5073480418 @default.
- W2906794889 hasAuthorship W2906794889A5086027350 @default.
- W2906794889 hasBestOaLocation W29067948891 @default.