Matches in SemOpenAlex for { <https://semopenalex.org/work/W2906839775> ?p ?o ?g. }
- W2906839775 endingPage "23" @default.
- W2906839775 startingPage "15" @default.
- W2906839775 abstract "A Gaussian mixture model (GMM)-based classification technique is employed for a quantitative global assessment of brain tissue changes by using pixel intensities and contrast generated by b-values in diffusion tensor imaging (DTI). A hemisphere approach is also proposed. A GMM identifies the variability in the main brain tissues at a macroscopic scale rather than searching for tumours or affected areas. The asymmetries of the mixture distributions between the hemispheres could be used as a sensitive, faster tool for early diagnosis. The k-means algorithm optimizes the parameters of the mixture distributions and ensures that the global maxima of the likelihood functions are determined. This method has been illustrated using 18 sub-classes of DTI data grouped into six levels of diffusion weighting (b = 0; 250; 500; 750; 1000 and 1250 s/mm2) and three main brain tissues. These tissues belong to three subjects, i.e., healthy, multiple haemorrhage areas in the left temporal lobe and ischaemic stroke. The mixing probabilities or weights at the class level are estimated based on the sub-class-level mixing probability estimation. Furthermore, weighted Euclidean distance and multiple correlation analysis are applied to analyse the dissimilarity of mixing probabilities between hemispheres and subjects. The silhouette data evaluate the objective quality of the clustering. By using a GMM in the present study, we establish an important variability in the mixing probability associated with white matter and grey matter between the left and right hemispheres." @default.
- W2906839775 created "2019-01-11" @default.
- W2906839775 creator A5000975435 @default.
- W2906839775 creator A5020005824 @default.
- W2906839775 creator A5024928566 @default.
- W2906839775 creator A5035130915 @default.
- W2906839775 creator A5035935386 @default.
- W2906839775 creator A5062139000 @default.
- W2906839775 creator A5068271733 @default.
- W2906839775 creator A5082973301 @default.
- W2906839775 creator A5086422507 @default.
- W2906839775 date "2019-03-01" @default.
- W2906839775 modified "2023-10-14" @default.
- W2906839775 title "Gaussian mixture model for texture characterization with application to brain DTI images" @default.
- W2906839775 cites W1091326591 @default.
- W2906839775 cites W1965018875 @default.
- W2906839775 cites W1968723779 @default.
- W2906839775 cites W1973041621 @default.
- W2906839775 cites W1978116878 @default.
- W2906839775 cites W1981367467 @default.
- W2906839775 cites W1987971958 @default.
- W2906839775 cites W1999216386 @default.
- W2906839775 cites W2004842662 @default.
- W2906839775 cites W2011832962 @default.
- W2906839775 cites W2026669237 @default.
- W2906839775 cites W2033178790 @default.
- W2906839775 cites W2050784656 @default.
- W2906839775 cites W2071480475 @default.
- W2906839775 cites W2082503527 @default.
- W2906839775 cites W2099192586 @default.
- W2906839775 cites W2106533387 @default.
- W2906839775 cites W2110444763 @default.
- W2906839775 cites W2121034387 @default.
- W2906839775 cites W2123672494 @default.
- W2906839775 cites W2129920843 @default.
- W2906839775 cites W2134041631 @default.
- W2906839775 cites W2147185766 @default.
- W2906839775 cites W2151566456 @default.
- W2906839775 cites W2160800897 @default.
- W2906839775 cites W2162632094 @default.
- W2906839775 cites W2209394428 @default.
- W2906839775 cites W2212804566 @default.
- W2906839775 cites W2320096023 @default.
- W2906839775 cites W2525131019 @default.
- W2906839775 cites W2697775220 @default.
- W2906839775 cites W2735379969 @default.
- W2906839775 cites W2782428642 @default.
- W2906839775 doi "https://doi.org/10.1016/j.jare.2019.01.001" @default.
- W2906839775 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6413310" @default.
- W2906839775 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30899585" @default.
- W2906839775 hasPublicationYear "2019" @default.
- W2906839775 type Work @default.
- W2906839775 sameAs 2906839775 @default.
- W2906839775 citedByCount "25" @default.
- W2906839775 countsByYear W29068397752019 @default.
- W2906839775 countsByYear W29068397752020 @default.
- W2906839775 countsByYear W29068397752021 @default.
- W2906839775 countsByYear W29068397752022 @default.
- W2906839775 countsByYear W29068397752023 @default.
- W2906839775 crossrefType "journal-article" @default.
- W2906839775 hasAuthorship W2906839775A5000975435 @default.
- W2906839775 hasAuthorship W2906839775A5020005824 @default.
- W2906839775 hasAuthorship W2906839775A5024928566 @default.
- W2906839775 hasAuthorship W2906839775A5035130915 @default.
- W2906839775 hasAuthorship W2906839775A5035935386 @default.
- W2906839775 hasAuthorship W2906839775A5062139000 @default.
- W2906839775 hasAuthorship W2906839775A5068271733 @default.
- W2906839775 hasAuthorship W2906839775A5082973301 @default.
- W2906839775 hasAuthorship W2906839775A5086422507 @default.
- W2906839775 hasBestOaLocation W29068397751 @default.
- W2906839775 hasConcept C121332964 @default.
- W2906839775 hasConcept C126838900 @default.
- W2906839775 hasConcept C138777275 @default.
- W2906839775 hasConcept C143409427 @default.
- W2906839775 hasConcept C149550507 @default.
- W2906839775 hasConcept C153180895 @default.
- W2906839775 hasConcept C154945302 @default.
- W2906839775 hasConcept C163716315 @default.
- W2906839775 hasConcept C183115368 @default.
- W2906839775 hasConcept C24890656 @default.
- W2906839775 hasConcept C33923547 @default.
- W2906839775 hasConcept C41008148 @default.
- W2906839775 hasConcept C58103923 @default.
- W2906839775 hasConcept C61224824 @default.
- W2906839775 hasConcept C62520636 @default.
- W2906839775 hasConcept C71924100 @default.
- W2906839775 hasConceptScore W2906839775C121332964 @default.
- W2906839775 hasConceptScore W2906839775C126838900 @default.
- W2906839775 hasConceptScore W2906839775C138777275 @default.
- W2906839775 hasConceptScore W2906839775C143409427 @default.
- W2906839775 hasConceptScore W2906839775C149550507 @default.
- W2906839775 hasConceptScore W2906839775C153180895 @default.
- W2906839775 hasConceptScore W2906839775C154945302 @default.
- W2906839775 hasConceptScore W2906839775C163716315 @default.
- W2906839775 hasConceptScore W2906839775C183115368 @default.
- W2906839775 hasConceptScore W2906839775C24890656 @default.
- W2906839775 hasConceptScore W2906839775C33923547 @default.
- W2906839775 hasConceptScore W2906839775C41008148 @default.